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Action

For a mechanical system with generalized coordinates q1, q2, in
motion between times t1 and t2, the action is defined as the
integral

S [t1, t2] =

∫ t2

t1

dtL(q1, q2, · · · , q̇1, q̇2, · · · , t)

The value of the action depends on the world line of the particle
{q1(t), q2(t), · · · }: it is a functional of the world line.
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Action

For a mechanical system with generalized coordinates q1, q2, in
motion between times t1 and t2, the action is defined as the
integral

S [t1, t2] =

∫ t2

t1

dtL(q1, q2, · · · , q̇1, q̇2, · · · , t)

The value of the action depends on the world line of the particle
{q1(t), q2(t), · · · }: it is a functional of the world line.
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Hamilton’s principle

The particle’s actual trajectory is the one that minimizes the action
subject to the boundary conditions imposed on it.
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Functionals: easy as π

An example of a functional of a curve: the area under a curve!

A[y ] =

∫ xf

xi

dxy(x).
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Functionals: easy as π

An example of a functional of a curve: the area under a curve!

A[y ] =

∫ xf

xi

dxy(x).

x

y

y(x)

The area is a functional of the curve. Use Riemann sums to
approximate the area in terms of N variables y(x1), y(x2), etc.,

A[y ] = hN

N
∑

i=1

y(xi ), where hN =
xf − xi

N
.

Finding variations of the area with the curve is just calculus of
many variables.
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Calculus of variations

Finding an extremum of a function involves setting its derivatives
to zero and then solving the resulting equations. Checking whether
an extremum is a maximum or minimum involves checking the sign
of the second derivative. The minimum of a functional is similar.
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Calculus of variations

Finding an extremum of a function involves setting its derivatives
to zero and then solving the resulting equations. Checking whether
an extremum is a maximum or minimum involves checking the sign
of the second derivative. The minimum of a functional is similar.
Make small variations δqk(t) around a trajectory specified by qk(t)
and q̇k(t). Since the boundary conditions are fixed, so
δqk(t1) = δqk(t2) = 0. The variation of L under such a variation
of the trajectory is

δL =
∑

k

δqk
∂L

∂qk
+ δq̇k

∂L

∂q̇k
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Calculus of variations
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Calculus of variations

Finding an extremum of a function involves setting its derivatives
to zero and then solving the resulting equations. Checking whether
an extremum is a maximum or minimum involves checking the sign
of the second derivative. The minimum of a functional is similar.
Make small variations δqk(t) around a trajectory specified by qk(t)
and q̇k(t). Since the boundary conditions are fixed, so
δqk(t1) = δqk(t2) = 0. The variation of L under such a variation
of the trajectory is

δL =
∑

k

δqk
∂L

∂qk
+

d

dt

(

δqk
∂L

∂q̇k

)

− δqk
d

dt

(

∂L

∂q̇k

)

Now we put this inside the integral to evaluate δS . Since
∫ t2

t1

dt
d

dt

(

δqk
∂L

∂q̇k

)

= δqk
∂L

∂q̇k

∣

∣

∣

∣

t2

t1

= 0,

we recover the Euler-Lagrange equations.
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Two examples

Quartic oscillator Physical pendulum

L 1
2mq̇2 − 1

4V0q
4 1

2mℓ2θ̇2 −mgℓ(1− cos θ)

Q V0q
3 −mgℓ sin θ

p mq̇ mℓ2θ̇

EoM mq̈ + V0q
3 = 0 mℓ2θ̈ +mgℓ sin θ = 0

q̈ + ζ2q3 = 0 θ̈ +Ω2 sin θ = 0

where ζ2 = V0
m

where Ω2 =
√

g
L

t → Ωt θ̈ + sin θ = 0

q → q/ζ q̈ + q3 = 0
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Numerical solutions

Minimization of the action can be carried out numerically very
simply using a lattice discretization. Work with D degrees of
freedom, q1, q2, · · · qD . Divide the time interval into N equal
pieces. At times tj = t0 + jhN use the notation q

j
k = qk(tj), so that

the action is a function of D(N − 1) variables—

S =
mk

2h2N

D,N
∑

k=1,j=1

(

q
j
k − q

j−1
k

)2
−

N
∑

j=1

V (qj1, q
j
2, · · · , q

j
D)

= N2
N
∑

j=1

[

D
∑

k=1

q
j
kq

j−1
k − V (qj1, q

j
2, · · · , q

j
D)

]

.

In the second line we have assumed that units have been chosen so
that mk = 1 and tN − t0 = 1. Since V depends only the qk at one
fixed time, we have defined V = V − N2

∑

k(q
j
k)

2. The only

connection between different times is the hopping term q
j
kq

j−1
k .
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An idiotically simple algorithm for minimization

There are many ways to minimize a function of many variables. A
mindlessly simple algorithm is:

1 Choose a stopping criterion ǫ.

2 Start with a trajectory {qjk}. The corresponding value of the
action is S .

3 Select a random set of values {q′jk} and compute the
corresponding value of the action, S ′.

4 |S − S ′| < ǫ then stop. The trajectory is now {qjk}.

5 If S ′ < S set qjk = q′
j
k . Repeat from step 3.
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An idiotically simple algorithm for minimization

There are many ways to minimize a function of many variables. A
mindlessly simple algorithm is:

1 Choose a stopping criterion ǫ.

2 Start with a trajectory {qjk}. The corresponding value of the
action is S .

3 Select a random set of values {q′jk} and compute the
corresponding value of the action, S ′.

4 |S − S ′| < ǫ then stop. The trajectory is now {qjk}.

5 If S ′ < S set qjk = q′
j
k . Repeat from step 3.

Minimization of a function of many variables

Can you think of other ways of minimizing the action which do not
use the Euler-Lagrange equations?
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Two Problems

Problem 6: Simple harmonic motion

The Lagrangian for a simple harmonic oscillator becomes

L =
1

2
θ̇2 −

1

2
θ2, θ(0) =

1

2
, θ(1) = −

1

2
.

Find the trajectory by numerical minimization.

Problem 7: The physical pendulum

The Lagrangian for the physical pendulum is

L =
1

2
θ̇2 − (1− cos θ), θ(0) =

1

2
, θ(1) = −

1

2
.

Find the trajectory by numerical minimization.
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Integrals of motion

Some constraints on the solutions of the equations of motion can
be found without solving the full problem, i.e., without giving q’s
as functions of time. One example is of a free particle— in this
case the integral of motion is the conserved value of the
momentum. Similarly for a freely rotating body the conserved
angular momentum is an integral of motion.
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Integrals of motion

Some constraints on the solutions of the equations of motion can
be found without solving the full problem, i.e., without giving q’s
as functions of time. One example is of a free particle— in this
case the integral of motion is the conserved value of the
momentum. Similarly for a freely rotating body the conserved
angular momentum is an integral of motion.

First integrals of motion

In general a first integral of motion is some relation

f (q1, q2, · · · , q̇1, q̇2, · · · , t) = constant.
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Integrals of motion

Some constraints on the solutions of the equations of motion can
be found without solving the full problem, i.e., without giving q’s
as functions of time. One example is of a free particle— in this
case the integral of motion is the conserved value of the
momentum. Similarly for a freely rotating body the conserved
angular momentum is an integral of motion.

First integrals of motion

In general a first integral of motion is some relation

f (q1, q2, · · · , q̇1, q̇2, · · · , t) = constant.

They are called first integrals because the equations of motion
involve q̈k , i.e., differential equations of the second order.
However, these conditions “integrate” the equations once, so that
they provide differential equations of first order.
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Symmetries of a system

For a free particle, any point in space looks the same as any other,
because every point is free of forces. As a result, the Lagrangian is
independent of the coordinates, i.e., V = constant.
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Symmetries of a system

For a free particle, any point in space looks the same as any other,
because every point is free of forces. As a result, the Lagrangian is
independent of the coordinates, i.e., V = constant.
For a freely rotating body, any orientation is the same as any
other, since there is no moment that arises as it rotates. As a
result, the Lagrangian is independent of the angle the body makes
with respect to a fixed frame.
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Symmetries of a system

For a free particle, any point in space looks the same as any other,
because every point is free of forces. As a result, the Lagrangian is
independent of the coordinates, i.e., V = constant.
For a freely rotating body, any orientation is the same as any
other, since there is no moment that arises as it rotates. As a
result, the Lagrangian is independent of the angle the body makes
with respect to a fixed frame.

Symmetries of mechanical systems

These notions of symmetry permit immediate generalization. We
say that a system posseses a symmetry (or symmetries) if one (or
more) of the generalized coordinates do not appear in the
Lagrangian.
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Symmetries and integrals of motion

Write the Euler-Lagrange equations in the form

ṗk =
∂L

∂qk
.

If a Lagrangian possesses a symmetry with respect to one of the
generalized coordinates, qk , then the right hand side vanishes. The
symmetry leads to a first integral of motion, the conservation of
the corresponding momentum.
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Symmetries and integrals of motion

Write the Euler-Lagrange equations in the form

ṗk =
∂L

∂qk
.

If a Lagrangian possesses a symmetry with respect to one of the
generalized coordinates, qk , then the right hand side vanishes. The
symmetry leads to a first integral of motion, the conservation of
the corresponding momentum.

Noether’s Theorem

Every symmetry leads to a conservation law for the corresponding
momentum. Generalized coordinates associated with such integrals
of motion are called cyclic coordinates.
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Motion of a charged particle

Problem 8: Motion of a charged particle

What is the canonical momentum of a charged particle in a EM
field? If the external fields are time-independent, then L does not
depend explicitly on the time. In this case check whether T + V is
conserved. system?

Problem 9: A charged particle in a constant magnetic field

Are there any conserved quantities when a charged particle moves
in a constant magnetic field and zero electric field? What does
your analysis show about the general character of the trajectories?

Problem 10: A charged particle around a magnetic monopole

A magnetic monopole is any source which produces a radial
magnetic field. For a charged particle moving in the field of a fixed
magnetic monopole, what are the conserved quantities?
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Scaling symmetries

Under a scaling L → λL the equations of motion and its solutions
remain unchanged.
Assume that under a scaling of coordinates qk → λqk , the
potential scales as V → λαV . Scale the time as t → λβt; the
kinetic energy scales as T → λ2(1−β)T . For the Lagrangian to
scale uniformly, one must have

2(1− β) = α, i .e. β = 1−
α

2
.

As a result, two trajectories related by scaling must obey the law

t ′

t
=

(

l ′

l

)(1−α/2)

.

Then Kepler’s third law that the cube of the distance of a planet
from the sun is proportional to the square of its period of
revolution implies α = −1, i.e., Newton’s law of gravity.
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