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Angular motion

Since the angular term in the Lagrangian is Lφ = mr2φ̇2/2, the
coordinate φ is cyclic. We have

pφ =
∂Lφ

∂φ̇
= mr2φ̇ = |L|, and 0 =

ṗφ

2m
=

d

dt

(

1

2
r2φ̇

)

= Ȧ,

where Ȧ is the rate at which an area element of the orbit is swept
out. This is Kepler’s second law of planetary motion. It is
independent of the form of the potential, and is just an expression
of the conservation of angular momentum, i.e., of rotational
invariance in space.
The polar angle traversed as a function of time is given by the
expression

φ =
|L|
m

∫

t

0

dt

r2
, and 2π =

|L|
m

∫

T

0

dt

r2
,

where T is the time period of the angular motion.
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The Virial of Clausius

For N bodies moving only under their mutual interactions, consider
the quantity called the virial, i.e.,

G =
N
∑

i=1

pi · xi .

Then

Ġ =

N
∑

i=1

ṗi · xi + pi · ẋi =
N
∑

i=1

Fi · xi +mv2i .

The second term is twice the kinetic energy, 2T . Averaging this
over a very long time, T , one finds

Lim
T →∞

1

T

∫

Ġdt = 2T +
N
∑

i=1

Fi · xi .
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The Virial Theorem and its applications

Now, the left hand side is [G (0)− G (T )]/T . Now if the motion is
periodic (or bounded) then this expression vanishes in the limit
T → ∞. This is the content of the Virial Theorem

T = −1

2

N
∑

i=1

Fi · xi =
1

2

N
∑

i=1

xi · ∇iV .

If this is satisfied by a system of particles, then they must be in a
stable bound configuration.

Problem 34: The classical atom

Take a classical atom with Z = 8, i.e., a nucleus of charge −8e
with 8 electrons orbiting it. If this is in a stable bound
configuration with typical size of 10−10 m, then what is the typical
speed of the electrons?
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Radial motion

minr rmax

U

r
attractive 1/r

repulsive 1/r2

1 H = p2/2m + U(r) with
U(r) = −κ/r + λ2/r2 where
κ = GMm and λ2 = |L|2/(2m).

2 t =
∫

dr [2{E − U(r)}]−1/2

3 Centrifugal term must be
repulsive

4 When E > 0 rmax → ∞
5 Apses are points on the orbit

where ṙ = 0. rmin and rmax

called apsidal distances.

6 Circular orbit at the minimum of
the potential
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Equation of the orbit

The orbit is the path traced in space: r(φ). It has less information
than the trajectory, i.e., x(t). To find the orbit we note that

φ̇ =

√

2

m

λ

r2
, and ṙ =

√

2

m
[E − U(r)].

λ, and E are fixed for each trajectory. Using these two equations
together we find that

dφ

dr
=

λ

r2
√
E − U

, so φ = φ0 +

∫

r

r0

λdr/(
√
Er2)

√

1− U/E
.

The subscript zero on any variable denotes its initial value. Now
introduce the notation u = λ/(

√
Er), so that U/E = u2 − γu

where γ = κ/(λ
√
E ) and du = −λdr/(

√
Er2).
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The orbit

The orbit then becomes

φ = φ0 −
∫

u

u0

du
√

1 + γu − u2
.

Using the fact that 1 + γu − u2 = 1 + γ2/4− (u − γ/2)2, and
defining cos z = (u − γ/2)/

√

1 + γ2/4, we have

φ− φ0 = z − z0.

If we choose the initial condition such that z0 = 0, then

u =
γ

2
+

√

1 +
γ2

4
cos(φ− φ0).

Rewriting this in terms of r , we get the equation for the orbit

1

r
=

κ

2λ2
[1 + e cos(φ− φ0)], where e =

√

1 +
4Eλ2

κ2
.

Note that when E < 0 then e < 1 and for E > 0 one has e > 1.
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Conic sections

Choose the unit of distance to be R = 2λ2/κ. Make the further
choice that the polar angle is measured from the distance of closest
approach of the particles. Since this is a choice of orientation of
the axes, it can be made independently of the initial conditions.
The resulting equation for the orbit is 1/r = 1 + e cosφ.
Now we show that this is the equation of a conic section by
rewriting this in Cartesian coordinates. Since r2 = x2 + y2 and
cosφ = x/r . One finds 1− ex = r .
Two special cases arise. For e = 0 one clearly has r = 1, i.e., a
circle. For e = 1 one obtains the equation y2 = 1− 2x , which is
the equation of a parabola. More generally one finds
(1− e2)x2 + 2ex + y2 = 1, which gives

(1− e2)

(

x +
e

1− e2

)2

+ y2 =
1

1− e2
.

This is an ellipse for e < 1 and a hyperbola for e > 1.
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Circular orbits

Since circular orbits occur when e = 0, one has,

4Eλ2

κ2
= −1, so E = − κ2

4λ2
.

The radius of this orbit is R = 2λ2/κ. So, the energy can be
written in terms of R in the form

E = − κ

2R
,

which is half the potential energy. The remainder is in the kinetic
energy, as is expected from the virial theorem.
The angular speed of rotation is 2π/T , where T is the period of
the circular orbit. As a result, T = πR2

√
2m/λ. One can write

this in the forms

T = 2πR

√

mR

κ
= 2πR

√

m

−2E
.
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Elliptic orbits

The apsidal distances are easily computed from the energy equation,
since the velocities vanish at these points. The equation to be solved is
E = U(r). This gives

r2 =
λ2

E
−
( κ

E

)

r .

The coefficient of the linear term is the sum of the apsidal distances and
hence equal to twice the semi-major axis of the ellipse. Therefore one has
the expressions

a = − κ

2E
, and e =

√

1− 2λ2

κa
.

The equation for the orbit can then be written in terms of a and e in the
form

1

r
=

1 + e cosφ

a(1− e2)
.

This gives the apsidal distances rmin = a(1− e) and rmax = a(1 + e),

these distances being reached when φ = 0 and π respectively.
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The trajectory

We had chosen an initial condition z0 = 0. From the discussion above,
we find that this corresponds to choosing r = rmin at time t = 0. Now
we can find the trajectory. From the angular velocity one has

t =
m

|L|

∫

t

0

r2dφ =
|L|3
mκ2

∫

dφ

(1 + e cosφ)2
.

Vestiges of medieval astronomy

Starting instead from the radial velocity and introducing the eccentric
anomaly, ψ, through r = a(1− e cosψ) where 0 ≤ ψ ≤ 2π, one finds

t =

√

ma3

κ

∫ ψ

0

dψ(1− cosψ), T = 2π

√

ma3

κ
,

where the period T clearly obeys Kepler’s third law of planetary motion.
The integral gives Kepler’s equation ωt = ψ − e sinψ where ω = 2π/T
and ωt is called the mean anomaly. We get the trajectory by equating
the expressions for r in terms of φ and ψ.
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Hyperbolic orbits

χ
2Φ

rmin

For a hyperbolic orbit, one may write the orbit equation in the
form

1

r
=

1

R
(1 + e cosφ), with R =

2λ2

κ
.

The scattering angle, χ, is related to the angle between the
two asymptotes, 2Φ, by the expression 2Φ+ χ = π. Since one
must have 1/r = 0 asymptotically, − cosΦ = sin(χ/2) = 1/e.
The impact parameter, ρ, determines the angular momentum
|L| = ρ

√
2mE , i.e., λ = ρ

√
E . This gives

e2 = 1 +
4Eλ2

κ2
= 1 +

(

2Eρ

κ

)2

, and ρ =
( κ

2E

)

cot
χ

2
.
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Rutherford scattering

Rutherford scattering is the result of two electric charges (of
magnitude Ze and Z ′e) projected towards each other. In this case
κ = ZZ ′e2. The cross section is

dσ

dχ
=

2π

sinχ
ρ(χ)

∣

∣

∣

∣

dρ

dχ

∣

∣

∣

∣

=
π

4

( κ

E

)2

cosec
4χ

2
.

The same result is obtained in quantum mechanics. Since cosecχ/2
is infinite in the forward direction (i.e., for χ→ 0) one expects that
most often the particles are barely scattered. These correspond to
particles with large impact parameter. Very few particles are
scattered at large angles, and these have small impact parameters.

Problem 35: Repulsive Coulomb forces

Solve the central forces problem with repulsive 1/r potential and
show that all orbits are open and hyperpolic. Obtain the scattering
cross section in this potential.
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The Laplace Hamilton Gibbs Runge Lenz vector

2-particles moving under their mutual interactions generally evolve
in a 4d phase space. But, in the Kepler problem, once r is
specified, φ is also completely specified. So the phase space is
effectively 2-dimensional. Hence there must be other conserved
quantities.
Construct the vector V = p× L. Since ṗ = −κr̂/r2, we can write

V̇ = ṗ× L = −mκ

r2
r̂ × (x× ẋ) =

mκ

r2
[r ẋ− r̂(r ṙ)],

using x = r r̂ and 2x · ẋ = d(r2)/dt = 2r ṙ . As a result

V̇ = mκ

[

ẋ

r
− x

r

ṙ

r

]

= mκ
d

dt

(x

r

)

.

So the vector A = p× L−mκr̂ is conserved. This is the
Laplace-Hamilton-Gibbs-Runge-Lenz vector.
Since A · L = 0, at most two components of A are non-vanishing.
Next we show that the norm A is also known.

Sourendu Gupta Classical Mechanics 2012: Lecture 10



Orbits Bound Orbits Unbound Orbits Conserved quantities Keywords

Equation of the orbit

Define the angle between x and A to be θ. Then A · x = Ar cos θ.
But, A · x = x · (p× L)−mκr , and x · p× L = L · x× p = |L|2,
then gives Ar cos θ = |L|2 −mκr . Clearly this gives

1

r
=

mκ

|L|2
(

1 +
A

mκ
cos θ

)

.

This is the equation of the orbit and immediately tells us that
A = mκe, so it is given in terms of κ, E and |L|. Also, it tells us
that the conserved vector A points to the periapsidal point.

L A

p
−x

The geometrical meaning of the various conserved
quantities is clear. The direction L̂ specifies the plane
of the orbit. E specifies the semi-major axis, i.e., the
size of the orbit. |L|, together with E specify the
eccentricity. Â defines the apsidal direction.
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Problem 36: Inverse square potential

Two particles move in their mutual interaction potential
V (r) = −κ/r2 where κ > 0.

1 Find when the orbits are open and closed.

2 Check whether there are circular orbits.

3 Integrate the equations of motion to find the equations of the
orbits.

4 Find the differential cross section for scattering of such
particles.

Repeat all these steps for a potential V (r) = −κ/r3 with κ > 0.
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