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Lorentz transformations

There is experimental evidence that the speed of light, c, is the
same in all inertial frames. Since the distance travelled by light is
related to the time of flight, in two different inertial frames, one
must have

C2t2 . X2 . y2 . Z2 =0= C2(t/)2 _ (X/)2 . (y/)2 . (21)2.
The transformation from one inertial frame to another cannot have

the form required in Galilean relativity, but must mix space and
time.

Problem 37: The Michelson-Morley Experiment

The Michelson-Morley experiment consists of measuring the speed
of light in two orthogonal directions in an earth-fixed frame. Since
the earth is not exactly an inertial frame (see Problem 3), find the
percent error in the measurement of the constancy of the speed of
light through such an experiment.
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Lorentz transformations

Note that all of mechanics involves the special speed c. In all
problems we can measure velocities in units of c¢. Introduce the
notation 8 = v/c, which we call a boost. Velocities then become
dimensionless, which means that the dimensions of length and time
are the same. We take the dimensions of time to be m (sometimes
written m/c). In these units, the frame invariant quantity which
we had written down earlier becomes

t2 . X2 . y2 _ 22 =0= (t/)2 . (XI)Z . (yI)Z . (21)2.

Introduce a 4 dimensional vector so we can write this as

t 1 0 0 O

T AN JT o X o 0 -1 0 0
x'Gx=0=x"Gx, x= y G= 0 0 -1 0
z 0 0 0 -1

x is called a 4-vector and G is called the metric.
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Lorentz transformations

As a matter of convenience, we will use the notation a-b =a’ Gb,
i.e., the dot product of two 4-vectors a and b will be taken with
respect to the Minkowski metric, G, instead of the usual Euclidean
metric. We will extend the the notation for the norm, |a]> = a-a
to 4-vectors. In terms of components, we will label the
components, a = (ao, a1, a2, a3). Therefore, we say xo = t. For
light we have x - x = 0; for other particles we have x-x > 0.

Problem 38: Triangle inequality

One often comes across the condition for norms that for two
vectors @ and b one should have

la— bl < [al* + [b]*.

Does this triangle inequality hold for 4-vectors with the Minkowski
metric?

o
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Lorentz transformations

We seek transformations between inertial frames which leave the
norm of 4-vector, x - x unchanged. These will be called
Lorentz transformations. If X' = L(3)x, then the matrix L(3)
satisfies L(3)7 GL(B) = G and
© Since det LT GL = det G, we have det L = +1. No
transformation, i.e., = 0 implies L =/, and this has
det L = 1.

Q We would clearly like to impose a law of addition of velocities:
L(B)L(B') = L(B").

O A boost of 8 can be undone by a boost of —f3, i.e., we would
like to have L(B)L(—p5) =1I.

@ The order in which we add the velocities does not matter; this
associative law implies that looking for a matrix representation
of L is consistent.

These properties define a group: the Lorentz group.



Lorentz transformations

If there is a boost only in the x direction, then it is reasonable to
assume that orthogonal coordinates do not change, and seek

(L O _(a b (1 O (1 0
=5 0) e=(2 ) H6 )= %)
The last matrix equality gives 3 scalar equations—
?—c?=1, d*°—b*=1, ab—cd=0.

The first two equations are solved by a = cosh ), ¢ = sinh 4 and
d = cosh x, b = sinh x. The third reduces to sinh(¢) — x) =0,
which gives x = 1. The determinant is automatically unity.

Problem 39: Symmetry of L,

The solution for Ly turns out to be symmetric. Is there a simple
argument which shows that L, is not antisymmetric? Is there an
argument which shows that L, and Lér have to be related?
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Lorentz transformations

The two-dimensional Lorentz transformation is now,

_(cosh) sinh)
L2(6) = (sinhw cosh’t/})'

This is the symmetry group of a hyperbola, i.e., any point on a
hyperbola can be parametrized by .
The light cone are those parts of
T(co space-time which are reached by a light
pulse originating from the origin.

Yy

Q
§ a Time-like regions of space-time are those
= % which have positive values of 72 = 2 — x2.
2 2 7 is called the proper time.  Space-like
o}

regions of space-time are those which have
T(cost,sinht) negative values of 02 = t? — x2.
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Lorentz transformations

The velocity 8 = tanh %), so that one has
1
coshyp =~v=———, and sinhvy = 3~.
Y=r N Y = py
Note the composition law for collinear Lorentz transformations is
n _ (cosh(v+4) sinh(y + ') _ /

This gives the relativistic law for the addition of velocities.
tanhy +tanh¢’ B+ f

tanh(y + ) = 1 Ttanh<tanhd/ 1+ BB

Problem 40: Light-cone variables

It is sometimes useful to change to light-cone variables xy =t + x
and x_ =t — x. How do Lorentz transformations change x?
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Lorentz transformations

Simultaneous events in one frame may not be simultaneous in
another frame. Moving inertial frames see time dilation and
Lorentz contraction of lengths.
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Lorentz transformations

Rotation matrices in space can be written in block diagonal form as

0

1 0T>
L:( , where 0=10
0 R 0

Since det R = 1, one also has det L = 1. Also, these matrices leave
x? 4+ y? + z? and t seperately unchanged, and hence LT GL = G.
Therefore, rotations in space are part of the Lorentz group. A
subgroup of the Lorentz group formed by the boosts and rotations
is called the proper Lorentz group.

Parity transformations, P = diag(1, —1,—1,—1), have

det P = —1, and give PT GP = G. Parity and the proper Lorentz
group together form the orthochronous Lorentz group.
Time-reversal transformations, T = diag(—1,1,1,1) are part of
the Lorentz group. These, together with the orthochronous
Lorentz group give the full Lorentz group.

Sourendu Gupta Classical Mechanics 2012: Lecture 11



Lorentz transformations

The 4-vector v = dx/dT, where 7 is the proper time, has the same
transformation properties as the 4-vector x. v is called the proper
velocity. The position of a particle at rest at the spatial origin in
one frame is given by x = (7,0). In a frame boosted by 3 in the x
direction, the position becomes x’ = Lx = (y7, 877,0,0). As a
result, its proper velocity is v = (v, 7, 0,0). Obviously, |v|? = 1.
If the mass of a particle measured in its rest frame is m, then

p = mv is a 4-vector. Clearly |p|2 = m?; this is called the mass
shell condition. We find that

1
po=\/m2+p§+p§+p§=mv1+ﬁ272:m(1+§ﬁ2+---)'

Clearly pg — m is the non-relativistic kinetic energy in the limit of
small 5. We will define py to be the relativistic energy. As a
special case we find for the rest energy of a particle, the famous
equation H 4-momentum is conserved.
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Particle decay and scattering

Let the initial particle have 4-momentum p4, and let the final
momenta be pg and p.. We can take p,4 to be given, so that
there are 8 unknowns in the final state.
Let the masses of the particles be mys, mg and m¢ respectively.
The two mass shell conditions
2 2 2 2

lpg|” = m3, and lpcl® = mg,
reduce the number of unknowns by 2.
Then we have 4-momentum conservation,

PAa=Ps *+ Pc:

This reduces the number of unknowns by 4.

The remaining unknowns can be absorbed into a boost, to choose
the inertial frame in which we work, and the orientation of axes in
that frame. So, all the components of the final momenta will be
given in terms of known quantities.
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Particle decay and scattering

Work in the rest frame of A, so py = (ma,0,0,0). Let the final
particles come out in the X direction, so pg = (E, p,0,0) and
pc = (E’,—p,0,0). There are 3 unknowns, E, E’ and p, and 3
equations, one from conservation two from mass shell—

E+ E = my, E2:m2B+p2, E'2:m2C-|—p2.

Subtract the last two equations to get

2 2

m2 — m

E*’—E?=mg—mgz, so E-FE=-8_—-C
ma

This gives

2 2 2 2 2 2
mj+mg —m mj — mg +m
A_—B € and F=-A4 8¢

E =

2mp 2mp

Either of these can be used with the corresponding mass-shell
condition to give p.



Particle decay and scattering

With 3 different momenta Pa. Pg and pc, there are 6 Lorentz
invariants— |p;|2> = m? and the 3 dot products Since

Ps = Pg + Pc. one fmds Pg-Pc=(m3—m%— mC)/2 and
similarly for the two remaining dot products.

The total number of vector components that one had to begin
with are 12. Of these, 6 are completely determined by the dot
products, which are known. The remaining 6 are completely
specified by 3 boosts and 3 angles which serve to define an inertial
frame completely.

Therefore, all the components of the initial and final momenta are
known given any choice of frame and coordinates and the particle
masses.
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Particle decay and scattering

Two particles of masses my and mg scatter elastically. The initial
4-momenta are p4 and pg, and the final are p/, and pz. There are
8 components of momenta in the final state, 2 mass-shell
conditions, and 4 conservation equations: so 2 unknowns.

Work in the CM frame with initial particles coming in the X
direction: ps = (E, p,0,0) and pg = (E, —p,0,0). Clearly
s=(pa+pg)? = (E+ E')? is Lorentz invariant. Now solve this in
terms of the CM energy, /s, ma and mg exactly as for the
previous problem.

Suppose one studies the final particles in a rotated frame with the
new X direction in the direction of the momentum of A, then the
solution is exactly as above. The only additional information
needed is the direction between the initial and final momentum of
A, i.e., the scattering angle, x. So the kinematics is completely
specified by the CM energy, /s, and the scattering angle, x.
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Particle decay and scattering

Of the 16 components of four 4-momenta, 6 can be removed into
a choice of inertial frame: 3 boosts and 3 rotations. There remain
10 more variables, which must be exactly equal in number to the
Lorentz invariants. Explicitly, these are the norms of the momenta
and 6 different dot products. Since there are only two unknowns,
both can be written in terms of Lorentz invariants.

One is the square of the CM energy, s. The other is

t=[pa—Pal® =2(ma+pPa-Pa),  Pa-Pa= mir’(1—p5%cosx).

Here we have used the parametrization for the 4-momentum

pa = may(1, 5,n), where fi is the direction of the velocity of the
particle in the chosen frame and (5 is the boost required to bring it
to that frame from its RF. Note also that § is specified as soon as
s is give, so one can trade x for t. The quantities s and t are
called Mandelstam variables.
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Particle decay and scattering

Problem 41: Mandelstam variables |

Show that in the elastic scattering of two particles the 6 dot
products can all be written in terms of the s and t and the two
masses. Write explicit expressions for each of the dot products.

4

Problem 42: Mandelstam variables |

For the inelastic scattering A+ B — C + D, count the number of
variables. Solve the scattering problem. Write the results in terms
of Lorentz invariant quantities.

4

Problem 43: Particle decay

For the decay process A — B 4+ C + D, count the number of
variables. Solve the problem. Write the results in terms of Lorentz
invariant quantities.

y
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