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The Lagrangian

In the inertial space frame we found the kinetic energy of a
rotating rigid body to be

T =
1

2
MṘ

2
+

1

2
Iijωiωj , where Iij =

N
∑

α=1

(r2δij − ri rj),

M is the mass of the system and I is the inertia tensor.
The inertia tensor is a 3× 3 matrix. Its eigenvectors are special
directions within the rigid body called the principal axes. The
eigenvalues of the tensor, I1, I2 and I3, are called the principal
moments of inertia.
The Lagrangian is

L =
1

2
MṘ

2
+

1

2
ω · I · ω − V (R,φ),

where V is the external potential within which the body moves.
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The angular momentum

The angular momentum L is the generalized momentum conjugate
to the angular coordinates. As usual, we can write

Li =
∂L

∂ωi

, which implies L = Iω.

In general the angular momentum is not parallel to the axis of
rotation of the body.
Since I defines three independent principal axes, ûi , one can
decompose any vector into a linear sum of components along each
of these axes. So, using the decomposition ω = ωi ûi , we find that

L = Iω = Iiωi ûi .

In the special case when two of the ωi vanish, i.e., the angular
velocity is initially in the direction of one of the principal axes, then
L is parallel to the ω.
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The equations of motion

In the inertial space frame, the Lagrangian is given by

L =
1

2
MṘ

2
+

1

2
Iij θ̇i θ̇j − V (R, θi ).

So the equations of motion reduce to one set of equations for the
rate of change of Ṙ and another for the rate of change of ω̇. We
have earlier discussed why θi do not form the components of a
vector, but ωi = θ̇i do.
The motion of the CM is governed by the usual equations

MR̈ = F = −∇RV (R, θi ),

where the gradient contains partial derivatives with respect to the
components of R. In the absence of external forces, F = 0. The
remaining three equations of motion are

L̇ = M = −∇θV (R, θi ),

where M is the external torque acting on the body.
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The external torque

Representing a rigid body by N particles fixed to each other,

L =

N
∑

i=1

xi × pi =

N
∑

i=1

mixi × ẋi .

Here the x are taken in an inertial frame. Then,

L̇ =
N
∑

i=1

xi × ṗi =
N
∑

i=1

xi × f i ,

where f i is the force on the i-th body. The forces of constraint
satisfy f ij = −f ji . If there were only forces due to constraints, then

∑

i

xi × f i =
∑

ij

xi × f ij = −
∑

ij

xi × f ji = −
∑

ij

xi × f ij .

As a result, this would be zero. Therefore, the net torque on the
body is due to external forces only. When F = 0, the torque is
called a couple.

Sourendu Gupta Classical Mechanics 2012: Lecture 13



The Lagrangian formulation Free rotations Simple problems Euler equations Keywords

Free rotations

When the torque vanishes we have free rotations. The solution is
that L is conserved. If L coincided with one of the principal axes,
then this would imply that the angular speed of rotations about
that axis is constant.

Spherical top

For a spherical top (I1 = I2 = I3) this implies that ω is constant,
since we are free to choose the principal axis along the direction of
L.

Rigid rotator

For a rotator (I1 = I2 and I3 = 0), L is always orthogonal to the
axis of symmetry. Hence the free motion is a rotation in this plane.
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Precession and spin

u1

ω

L

u3

For a symmetric top, I1 = I2 6= I3, the axis of
symmetry is the principal axis û3. The direction
of L and ω do not coincide in general. Since all
directions perpendicular to û3 are equivalent, we
can choose the û1 directions at some time t so
that L and ω are in the 13-plane. Then, since
L2 = I2ω2, we have L2 = ω2 = 0. Since
v = ω × x, the velocity at any point in the û3
axis is in the û2 direction.

This is independent of t. So, the axis û3 rotates around the fixed
vector L; this is called precession. The top also rotates around û3;
this is called spin. If L̂ · û3 = cos θ, then the spin velocity is
ω3 = L3/I3 = L cos θ/I3. The precession velocity is the component
of ω1 parallel to L, so ωp = ω1/ sin θ = M/I1.
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Euler angles

n
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Take the xyz axes to be the inertial space frame. Orient the body
frame XYZ along the principal axes. If the spin velocity around Ẑ,
is γ̇. The line of nodes, n̂, is orthogonal to ẑ and Ẑ. The angular
velocity along n̂ is β̇. The angle between x̂ and n̂ is α.
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Angular velocity

Problem 54: Angular velocity in Euler angles

Check that the angular velocity in the space frame, ω, is related to
the rate of change of the Euler angles by

ωx = α̇ sinβ sin γ + γ̇ cosβ,

ωy = α̇ sinβ cos γ − γ̇ sinβ,

ωz = α̇ cosβ + β̇.

Construct the rotational term in the kinetic energy using these
expressions. Specialize to the cases of the spherical top and the
rigid rotator and check that the correct description of free
rotations is obtained in both these cases.
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Simple problems

Problem 55: Precession in Euler angles

For a symmetric top with I1 = I2 6= I3, with the symmetry axis
along Ẑ, choose one of the principal axes along n̂. Show that

T =
I1

2
(α̇2 sin2 β + β̇2) +

I3

2
(α̇ cosβ + γ̇)2.

Describe free rotations and find the precession and spin angular
velocities.

Problem 56: Symmetric top with a couple

Take a symmetric top with I1 = I2 6= I3 subject to the potential
V = M cos γ. Write the Lagrangian for this problem and find the
conserved quantities and the cyclic coordinates. Using these,
reduce the problem to one-dimension. Describe the general
character of the motion, including nutations.
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A trivial special case

In the special case when F and M are orthogonal, one can find a
spatial vector a such that

M = a× F.

Now, for any vector a(λ) = a+ λF, the above equation is also
satisfied. Additionally, if one shifts the origin of coordinates to
x′ = x− a, then the torque becomes M′ = M− a× F = 0. So, for
any of these choices of coordinate systems, the external torque
vanishes if in another system the force and torque are orthogonal.

Problem 57: A linear equation

Given vectors F and M, one can find a vector a such that
M = a× F, because these are three equations in 3 unknowns.
Examine the linear equations in the components of a and find what
is special about them when F and M are orthogonal.
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The trivial case is realistic

When the force field is uniform, one can write each of the
f i = µi û. As a result, with the definition that µ is the sum over µi ,
the torque is

M = −û×

{

N
∑

i=1

µixi

}

= µX× û, where X =
1

µ

N
∑

i=1

µixi .

In the case where the forces are purely gravitational, X = R, and
the torque about the center of mass vanishes, as it does along any
line in the direction of the force along the center of mass.

Problem 58: Stabilizing an orbiting antenna

Suppose a communications satellite moves in an orbit around the
earth whose radius is much larger than that of the earth. If this
satellite has axial symmetry, then does it precess as it orbits the
earth? How large are the effects of the perturbation due to the
moon, the sun, and Jupiter?
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Euler equations

The simplest description of a rotating body is found in the body
frame with axial directions chosen along the principal axes of the
body. Clearly, for any vector

dV

dt

∣

∣

∣

∣

i

=
dV

dt

∣

∣

∣

∣

r

+Ω× V,

where the subscript i refers to the change in the inertial system
and r to the change in a system rotating with angular velocity Ω.
Using this we get Euler’s equations for rigid bodies in the body
frame

Ṗ+Ω× P = F, L̇+Ω× L = M.

Problem 59: Euler equations for free rotations

Solve Euler’s equations for free rotations of a body, i.e., for M = 0.
Check that these solutions are the same as the solutions obtained
earlier for free rotations, but viewed from a non-inertial frame.
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