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The physical pendulum

mg

L

T

θ

q̇ = p,

ṗ = − sin q.

We choose to work with a generalized coordinate q

which is the angle of displacement from the vertical,
with the bob hanging down. The potential energy is
taken to be zero in the position with q = 0. The
Hamiltonian of the physical pendulum is

H(p, q) = mgL

[

1

2

L

g
p2 + (1− cos q)

]

.

Choose the units of energy to be mgL, and the units of
time to be

√

L/g . Then the Hamiltonian can be
written in its reduced form

H(p, q) =
1

2
p2 + (1− cos q),

with the EoM shown alongside.
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Understanding the problem

The configuration space for the problem is the circle: S1.
Coordinates on the circle are the angle from the vertical,
which lies in the interval −π ≤ q ≤ π. If the pendulum
rotates around its pivot more than once, then the phase angle
can be moved back into the same range by subtracting out
integer multiples of 2π, since no measurable quantity depends
on how many times the pendulum has gone round the circle.

Phase space is a cylinder: S1 × R . Phase space trajectories
either wind round the cylinder or they don’t. Trajectories
which wind round the cylinder have energy E > 2 (where
E = 0 when the bob is at rest at the lowest point of the
circle). In this case the pendulum can go all the way round
the pivot. When E < 2 the motion is restricted to
|q| ≤ cos−1(E/2).
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Phase space trajectories

L

θ

Trajectories labelled by E . Seperatrix: E = 2.
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Other examples

1 Spherical pendulum: configuration space is the sphere S2,
generalized coordinates are angles θ and φ.

2 Double pendulum: configuration space is S1 × S1, generalized
coordinates are two angles θ1 and θ2

3 Double spherical pendulum: configuration space is S2 × S2

Problem 13: Jointed rods

Take a joint between two rigid rods which allows complete
rotational freedom of one rod when the other is fixed. How many
degrees of freedom are there in a system of N rigid rods joined end
to end? How many degrees of freedom if the free ends are joined
back? What are the configuration space and phase space in each
case?
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Using the first integral

The trajectory of the pendulum is found most easily by using the
first integral

p = q̇ =
√

2(E − 1 + cos q), so
dt

dq
=

1
√

2(E − 1 + cos q)
.

If the initial conditions are q(0) = 0 and p(0) =
√
2E , then for

E < 2 the amplitude Θ is E = 1− cosΘ = 2 sin2(Θ/2), and

t =

∫ q(t)

0

dq
√

2(E − 2 sin2(q/2))
=

√

2

E

∫ q(t)/2

0

dz
√

1− (2/E ) sin2 z

where we used the variable z = q/2. In terms of a phase variable
for the oscillator: sin u =

√

2/E sin z , the denominator is cos u.
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The trajectory of the pendulum

Since sin z =
√

E/2 sin u, we find

dz

cos u
=

√

E

2

du

cos z
.

Now cos2 u = 1− (2/E ) sin2 z and cos2 z = 1− (E/2) sin2 u. This
transforms the integral into the form

t =

∫ sin−1
√

2/E sin q/2

0

du
√

1− (E/2) sin2 u
= F

(

√

E

2
,

√

2

E
sin

q

2

)

.

The integral defines the incomplete elliptic integral of the first
kind. This completes the solution of the problem. Does it?

Sourendu Gupta Classical Mechanics 2012: Lecture 5



Setting up Jacobi Elliptic Functions The solution Keywords and References Appendix

Defining the Jacobi Elliptic Functions

The Jacobi Elliptic Functions are inverses of the elliptic integral of
the first kind. Given the elliptic integral

t =

∫ φ

0

du
√

1− k2 sin2 u
,

define the Jacobi Elliptic Functions

sn t = sinφ, cn t = cosφ, dn t =

√

1− k2 sin2 φ.

A more complete notation for the above functions is sn (t, k),
cn (t, k) and dn (t, k).
Note that the integral gives the special values sn (t, 0) = sin t,
cn (t, 0) = cos t and dn (t, 0) = 1.
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Some Elementary Properties

Two elementary properties immediately follow—

sn
2t + cn

2t = 1 and dn
2t + k2sn 2t = 1.

The incomplete elliptic integral gives

dt

dφ
=

1
√

1− k2 sin2 φ
, ie,

dφ

dt
= dn t.

From this the elementary derivatives follow—

d

dt
sn t = cn t dn t,

d

dt
cn t = −sn t dn t,

d

dt
dn t = −k2sn t.

Problem 14: Maclaurin series expansion

Find the values of the three functions at t = 0. Develop the
Maclaurin series expansion up to the 10th order for each of the
functions.
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Alternative forms of the elliptic integral

Another definition of the incomplete elliptic integral of the first
kind is useful in practice—

F (k , y) =

∫ y

0

dz
√

(1− z2)(1− k2z2)
=

∫ φ

0

du
√

1− k2 sin2 u
.

The substitution sin u = z can be used to show the equality, with
sinφ = y . F (k , y) is real when the modulus k lies in the interval
(0, 1). One has the special values F (k , 0) = 0 and F (0, y) = y ,
and F (1, 1) diverges.

Problem 15: Complementary modulus

Show that the elliptic integral for complementary modulus, ℓ, such
that k2 + ℓ2 = 1, is

F (ℓ, y) =

∫ f

1

dx
√

(x2 − 1)(1− k2x2)
, where f =

1
√

1− ℓ2y2
.
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Periodicity: the argument

In order to establish the periodicity of the Jacobi elliptic functions,
it is enough to prove it for any one of the functions. We will
choose to prove it for sn .
Why is a proof needed?
A functional relation of the form f (t) = sinφ is not sufficient to
show that f (t) is periodic. Consider f ≡ tanh, for example. So a
proof is needed.
The idea of the proof
In order to prove periodicity, one needs to prove two things: (a)
that t is finite for finite φ, (b) increasing φ by 2π should increase t

by a fixed amount, for every value of φ.
For the counter-example above, the condition (a) failed.
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Periodicity: the proof

One defines the complete elliptic integral of the first kind as the
special value

K (k) =

∫ π/2

0

du
√

1− k2 sin2 u
,

Since this integral does not diverge for k < 1, K is finite. This is a
proof of step (a) in the plan.
Step (b) follows from the fact that the integrand of the incomplete
elliptic integral is periodic with periodicity π, and symmetric about
u = π/2—

F (k , φ) =

∫ φ

0

du
√

1− k2 sin2 u
,

As a result, F (k , φ+ π/2) = K (k) + F (k , φ), so that
sn (t + 4nK ) = sn t.
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Periodicity: visualizing the proof
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This is a graph of the elliptic integral (with k < 1) which shows
that every time ψ increases by 2π, the incomplete elliptic integral
increases by 4K .
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Variation of period with modulus
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Addition theorems

Problem 16: Addition theorems

1 Prove the addition theorem

sn (u + v) =
sn u cn v dn v + sn v cn u dn u

1− k2sn 2u sn 2v
.

Do this by showing that if one varies u and v while keeping
the sum u + v fixed, then (s ′1s2 − s ′2s1)/(1− k2s21 s

2
2 ) is a

constant (the prime denotes differentiation with respect to u).

2 Using the above, prove the addition theorems

cn (u + v) =
cn u cn v − sn u sn v dn u dn v

1− k2sn 2u sn 2v

dn (u + v) =
dn u dn v − k2sn u sn v cn u cn v

1− k2sn 2u sn 2v
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Special values and periodicity

From the integral representation one find

snK = 1, cnK = 0 and dnK = ℓ.

Then, using the addition theorems, one finds

sn 2K = 0, cn 2K = −1 and dn 2K = 1.

Further use of the addition theorems gives

sn 3K = −1, cn 3K = 0 and dn 3K = ℓ.

Problem 17: Quarter and half period identities

Express the Jacobi elliptic functions for values of arguments t ± K ,
t ± 2K and t ± 3K in terms of the functions evaluated at t.
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Complex periodicity

Introduce the notation for the complete elliptic integral of the
complementary modulus, K (ℓ) = K ′. Then, from the expressions
derived earlier, we can write

L = K + iK ′ =

∫ 1/k

0

dz
√

(1− z2)(1− k2z2)
.

This implies that sn L = 1/k and dn L = 0, whereas cn L = −iℓ/k .
By using the addition theorems we have sn 2L = 0, cn 2L = 1 and
dn 2L = −1. Further, sn 4L = 0, cn 4L = 1 and dn 4L = 1.
As a result, we have the complex periodicity relations

sn (t + 4L) =
sn t cn 4L dn 4L+ sn 4L cn t dn t

1− k2sn 2t sn 24L
= sn t,

cn (t + 4L) = = cn t, and dn (t + 4L) = dn t.

Utilizing the periodicity in 4K , we find that the functions have
periodicity of 4iK ′.
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Fundamental modular domains

0<k<1

Jacobi elliptic functions are doubly periodic in the complex plane.
As a result, they can be defined completely by their behaviour
inside a parallelogram called the fundamental modular domain.
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Poles

Using the addition theorem we can write

sn (t + iK ′) = sn (t + L− K ) =
cn (t + L)dn (t + L)

1− k2sn 2(t + L)
.

Again, using the addition theorem we have,

sn (t + L) =
cn t dn t

k(1− sn 2t)
=

dn t

kcn t

cn (t + L) = − iℓcn t

k(1− sn 2t)
= − iℓ

kcn t

dn (t + L) =
iℓsn t cn t

1− sn 2t
=

iℓsn t

cn t
.

Putting these together, we find sn (t + iK ′) = 1/sn t. Since the
Taylor expansion gives sn t = t +O(t3), sn has a simple pole at
iK ′. As a result, cn and dn also have simple poles at the same
point. By the periodicity relations, there is also a pole at 2K + iK ′.
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Zeroes and Poles

sn(z,k)
2K

2iK’

Red circles: poles, white circles: zeroes.
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The time period of the pendulum

The time period, T , of the pendulum in the oscillatory mode is
given by

T

4
=















K

(

√

E
2

)

(E ≤ 2),
√

2
E
K

(

√

2
E

)

(E > 2).

For small E the period is 2π and as E → 2, the period diverges.
When E > 2 the period decreases with E , asymptotically as
1/
√
E . The large and small energy limits are amenable to

elementary analysis.
The trajectory of the pendulum is

sin
(q

2

)

=















√

E
2 sn

(

t,
√

E
2

)

(E ≤ 2),

sn

(

√

E
2 t,
√

2
E

)

(E > 2).
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Changing initial conditions

Problem 18: Changed initial conditions

Suppose that the initial conditions are q(0) = Θ and p(0) = 0. Set
up the solution of the problem and see how it differs from the
standard solution discussed in this lecture.

Problem 19: Fourier modes

In the limit E ≪ 1, the trajectory contains a single harmonic.
When the amplitude is larger, the solution contains many Fourier
components. Find the power spectrum of the solution.

Problem 20: Phase space area

Find the phase space area, S , enclosed by an orbit of energy E ≤ 2.
Check what is the relation between the period T and the dS/dE .
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What is an Elliptic Function?

A general definition

A function of a single complex variable which is analytic
everywhere in the complex plane except for isolated poles (i.e., a
meromorphic function) which is doubly periodic, i.e.,
f (z + w1) = f (z + w2) = f (z) for two complex numbers w1 and
w2, such that w1/w2 is not real, is called an elliptic function.

If w1/w2 is an integer, then the function is periodic. If w1/w2 is an
irrational number, then the function must be constant.
Since the function is doubly periodic, it is enough to understand its
behaviour within one period, i.e., a parallelogram in the complex
plane with vertices at the origin, w1, w2 and w1 + w2. Such a
period is called a fundamental modular domain.
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Fundamental Modular Domains

The FMD is not unique. Any choice of w1 and w2 which
reproduces all the lattice points as vertices of the corresponding
FMD are allowed. Choose one according to convenience: for
example no singularities on the boundaries.
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Analytic properties

The following theorems give fundamental properties of the elliptic
functions:

1 The number of poles in any FMD is finite: otherwise a
limit point would exist, which would be an essential singularity
of the function.

2 The number of zeroes in any FMD is finite: otherwise
there would be an essential singularity of the reciprocal of the
function.

3 The sum over residues in any FMD vanishes: proven
choosing an FMD which contains no poles on the boundaries
and then using periodicity along with the Cauchy theorem.

4 An elliptic function without poles is constant: a special
case of a more general theorem on meromorphic functions.
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The order of an elliptic function

Defining the order

The order of an elliptic function f (z) is the number of roots of
f (z) = c within one fundamental modular domain.

The Cauchy theorem can be used to show that the number of
zeroes of the above equation is equal to the number of poles.
Since every pole of f (z)− c is also a pole of f (z), the definition of
the order does not depend on c .
The order of an elliptic function must be at least 2, otherwise the
sum over residues cannot vanish.
The Jacobi elliptic functions are of order 2 and consist of two
simple poles in each FMD. The Weierstrass elliptic functions are
also of order 2 and contain an irreducible double pole. These are
the only elliptic functions of order 2.
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