
Symplectic structure Groups Keywords and References

Canonical Transformations

Sourendu Gupta

TIFR, Mumbai, India

Classical Mechanics 2012
August 27, 2012

Sourendu Gupta Classical Mechanics 2012: Lecture 6



Symplectic structure Groups Keywords and References

Symplectic structure

Hamilton’s equations treat qk and pk asymmetrically. It is possible
to hide the asymmetry inside clever notation. Define a column
vector x = (q1, q2, · · · , qD , p1, p2, · · · , pD)

T . Then, in terms of
this, one can write
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∂x
, where J =
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=

(

0 I

−I 0

)

.

The antisymmetric matrix J is called the symplectic form. Note
that J−1 = −J = JT .
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Restricted canonical transformations

Transformation of coordinates on phase space, ξ(x) are called
restricted canonical transformations if they do not change the form
of Hamilton’s equations. They are called restricted because they
do not depend explicitly on time.
The Jacobian of the transformation, M, is given by the derivatives
Mij = ∂ξi/∂xj . Clearly, ξ̇ = M ẋ. Also, one has the relation

∂H

∂xi
=
∂H

∂ξj

∂ξj
∂xi

, so
∂H

∂x
= MT ∂H

∂ξ
.

As a result, one may write the transformed Hamilton’s equations as

ξ̇ = MJ
∂H

∂x
= MJMT ∂H

∂ξ
.

The new coordinates can be interpreted as generalized coordinates

and momenta provided MJMT = J . Such transformations are
called symplectic transformations or canonical transformations.
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Some problems

Problem 21: A canonical transformation

It is common to call the top half of the components of ξ the new
coordinates, Qi , and the bottom half the new momenta, Pi . Take
the transformation Pi = qi and Qi = −pi . Is this a canonical
transformation?

Problem 22: Elementary Poisson brackets

With the notation x = (q1, q2, · · · , p1, p2, · · · )
T , write down the

matrix of Poisson brackets Pij = [xi , xj ]. How do these Poisson
brackets change under restricted canonical transformations?

Problem 23: Poisson’s theorem

If f and g are two conserved quantities, show that [f , g ] is also a
conserved quantity.
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Infinitesimal transformations

Consider the infinitesimal transformations

ξi = xi+δξi = xi+ǫfi (x), with Jacobian Mij =
∂ξi
∂xj

= δij+ǫ
∂fi
∂xj

,

which we will write as x
M
−→ ξ. In other words, we can write

M = I + ǫA. For the transformation to be canonical, one must
have

J = MJMT = (I + ǫA)J(I + ǫAT ) = J + ǫ(AJ + JAT ) +O(ǫ2).

If one wants to satisfy the condition that the coefficient of ǫ
vanishes, it is sufficient to arrange that A = JG , where G is a
symmetric matrix, so clearly, AT = −GT J. The symmetry of G is
guaranteed if we start with a generating function G(x) and write

ξ = x+ ǫJ∇G(x), i .e. fi =
∂G

∂xi
and Gij =

∂2G

∂xi∂xj
.
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The group of canonical transformations

Infinitesimal canonical transformations satisfy

1 The identity transformation, ξ = x, is canonical.

2 If x
L

−→ ξ is a canonical transformation and ξ
M
−→ ζ is also

canonical, then the product transformation x
P=LM
−→ ζ is also

canonical, because PJPT = LMJMTLT = LJLT = J.

3 If the transformation x
M
−→ ξ is canonical, so is the inverse

transformation ξ
M−1

−→ x.

4 Canonical transformations are associative, i.e., when making three

successive transformations, x
L

−→ ξ, ξ
M
−→ ζ and ζ

N
−→ χ, we get

the same transformation x
P=LMN
−→ χ whether we compose them as

x
LM
−→ ζ and ζ

N
−→ χ or x

L
−→ ξ and ξ

MN
−→ χ, since matrix

multiplication is associative: (LM)N = L(MN).

These properties define groups of transformations. Because there is a

continuous infinity of them, they form a Lie group.

Sourendu Gupta Classical Mechanics 2012: Lecture 6



Symplectic structure Groups Keywords and References

Active and passive views of transformations

When we start discussing transformations of geometrical objects
such as vectors, we must be aware of a choice of convention.
One view of transformations is the so-called passive view, in which
we take the vector as being unchanged and merely describing it in
some new coordinate system: the components of the vectors
change but the vector is geometrically the same. Consider a
rotation in two dimensional space. Take a vector with components
x = (r cos θ, r sin θ). If the coordinate system is rotated in the
anti-clockwise direction by an angle φ, then the new components
of the same vector are x = (r cos(θ − φ), r sin(θ − φ)).
The other view of transformations is the active view, i.e., one in
which the coordinate system is unchanged but the vector changes.
If the same vector x = (r cos θ, r sin θ) is rotated in the
anti-clockwise direction by an angle φ then the components of the
new vector x′ = (r cos(θ + φ), r sin(θ + φ)).
In these lectures we adopt the active view.
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An example: parity in three dimensions

Px

x

Matrix
representations:
I = I3, P = −I3.

Consider the two transformations acting on a
vector x: I (for identity) which does nothing to x,
and P (for parity) which changes x → −x, i.e., it
flips the sign of each component. Clearly P2 = I .
This set of transformations forms a group since:

1 There is an identity.

2 The set is closed under products of
transformations.

3 P is its own inverse.

4 Any product of three successive
transformations (III, IPI, IPP, etc.) is
associative.
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An example: reflections in two dimensions

R xy
x

R xx

x

R x+

x

R x−

x
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An example: reflections in two dimensions

In two dimensional space with vectors x = (x , y) place a mirror
along the line x = 0. Reflections, Ry , in this mirror transform
vectors as x → Ryx = (−x , y). In terms of matrices acting on
vectors, we have

I =

(

1 0
0 1

)

, and Ry =

(

−1 0
0 1

)

.

Clearly, R2
y = 1, and the set of transformations {I ,Ry} form a

group since the set has the identity, is closed, every element has an
inverse, and transformations are associative.
Take the reflections in a mirror placed along any line passing
through the origin; they form a similar group. We find

Rx =

(

1 0
0 −1

)

, R+ =

(

0 1
1 0

)

, R− =

(

0 −1
−1 0

)

.
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Two element groups

The group Z2

Take a group with two elements. One has to be the identity. The
other element has to be its own inverse (otherwise the group is not
closed). Hence all groups with two elements are equivalent. They
are all called Z2.

The product operation can be shown as a table:

I P

I I P
P P I

The set of integers {1,−1} under the operation of the product of
integers also forms the group Z2. The set of integers {0, 1} under
the operation of addition modulo 2 (add the integers and then take
the remainder after division by 2) also form the group Z2.
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Three element groups

Consider a group with three elements {I ,A,B}, with identity I .
The products A2, B2 and AB must be elements of the group. We
get one consistent solution if we set B = A2 and AB = I (for then
A3 = I and hence B2 = A4 = A). This gives a group which is
called Z3 (addition of integers modulo 3). No other possibilities
exist. The group multiplication table for Z3 is

I A B

I I A B
A A B I
B B I A

Problem 24: Four-element groups

How many groups exist with four elements: {I ,A,B ,C}?
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Continuous groups: a rotation group

Consider rotations around a point (the origin) in two dimensions.
Under such transformations we have x → Rx with

R(φ) =

(

cosφ sinφ
− sinφ cosφ

)

, x =

(

x

y

)

.

Clearly, R(0) = I , so identity is one of the rotations. Now, using
the addition theorems for cos and φ, we can verify that
R(φ)R(θ) = R(φ+ θ), so the set is closed. Since R(φ)R(−φ) = I ,
each element has an inverse. The group operation is associative
because matrix multiplication is associative. So rotations in two
dimensions form a group.
The group is called continuous because the components of R(φ)x
are continuous functions of φ. Since are also differentiable
functions of φ, this is called a Lie group. This is given the name
SO(2), i.e., the group of orthogonal 2× 2 matrices with
determinant unity.
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Infinitesimal elements of SO(2)

Note that the determinant of R(ǫ) is unity. This is a characteristic
of rotations. However the determinants of P , Rx , Ry , R+ and R−

are all negative. This is a characteristic of reflections.
Rotations by an infinitesimal angle ǫ are clearly given by

R(ǫ) =

(

1 ǫ
−ǫ 1

)

= I + iǫσ, where σ =

(

0 −i

i 0

)

.

Problem 25: Exponentiation

A definition of exp x is that it is the limit of (1 + x/N)N when
N → ∞. So, by analogy one can write

R(φ) =
Lim
N→∞

(

I +
iφσ

N

)N

= exp(iφσ).

How would you actually compute the exponential of a matrix?
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One-dimensional representation of the rotation group

Suppose we write the vector x as the complex number z = x + iy .
Then the rotated vector, R(φ)x can be represented as the complex
number

cosφx + sinφy + i(− sinφx + cosφy)

= cosφ(x + iy) + sinφ(y − ix) = (cosφ− i sinφ)z = e−iφz .

The unimodular complex numbers, exp(iφ) form a group which is
given the name U(1) (the group of 1× 1 unitary matrices). Clearly
SO(2)=U(1). Both are Abelian groups, i.e., all their elements
commute with each other.
The eigenvalues of the matrix R(φ) are exp(±iφ). The action of
the rotation on z is z → exp(−iφ)z . All 2d vectors can also be
mapped on the complex conjugate z = x − iy . Rotations act on
this by z → exp(iφ)z .
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Rotations in three dimensions

Rotations in three dimensions can be specified by giving an axis of
rotation, n̂, and the angle of rotation, ψ around n̂, which we write
as R(n̂, ψ). The specification of an unit vector in three dimensions
requires two angles

n̂T = (sin θ sinφ, sin θ cosφ, cosφ).

So a rotation in three dimensions can be specified by three angles.
Rotations around a fixed axis n̂ are isomorphic to rotations in two
dimensions,

R(n̂, ψ′)R(n̂, ψ) = R(n̂, ψ + ψ′).

However, rotations around different axes have quite different
properties

R(n̂, ψ)R(n̂′, ψ′) 6= R(n̂′, ψ′)R(n̂, ψ).
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Lorentz transformations

In relativity, the norm of a 4-vector (the first component of x is the
time and the others are space) is x · x = xTGx where
G = diag(−1, 1, 1, 1). A boost acts linearly and homogenously on
the coordinates, so one has x → Mx under boosts (also called
Lorentz transformations). A boost leaves relativistic norms
unchanged. Hence, MTGM = G .

Problem 26: Relativistic boosts

1 Prove that Lorentz transformations form a group.

2 If space were one-dimensional, then G = diag(−1, 1), and
Lorentz transformations would be represented by 2× 2
matrices. Since a boost is specified by one parameter, each M

must be specified by a single parameter. What can you say
about such matrices. Can you use the group property to find
the relativistic law of addition of velocities?

Sourendu Gupta Classical Mechanics 2012: Lecture 6



Symplectic structure Groups Keywords and References

Keywords and References

Keywords

antisymmetric matrix, symplectic form, restricted canonical
transformations, Jacobian, symplectic transformations, canonical
transformations, generating function, groups, passive view, active
view, mirror, rotation in two dimensions, Lie group, exponential of
a matrix, Abelian groups, rotation in three dimensions, isomorphic,
4-vectors, relativistic boosts, Lorentz transformations

References

Goldstein, Chapter 9

Sourendu Gupta Classical Mechanics 2012: Lecture 6


	Symplectic structure
	Diversion on groups
	Keywords and References

