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Counting

Model a rigid body by N particles, with positions xi (1 ≤ i ≤ N),
such that the relative separations xij = xi − xj are fixed vectors. In
an external inertial frame, called the space frame, one has to
specify 3N coordinates. The number of constraints seems to be
3N(N − 1)/2, so there seem to be more constraints than variables.
However, xij − xjk = xik , so only the constraints x1i are
independent. Hence there are 3(N − 1) constraints. The number
of degrees of freedom seem to be 3.
If there are no forces on the particle, then one can create another
inertial frame in which x12 is parallel to x̂, and x13 lies in the xy

plane. The ẑ direction is then automatically fixed. The orientation
of this body frame with respect to the space frame requires 3 other
degrees of freedom.
So, the dynamics of a rigid body is described by 6 degrees of
freedom, and a 12 dimensional phase space.
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Describing orientation
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Standard conventions: use Euler angles
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Describing orientation

α
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x

Standard conventions: use Euler angles

1 Rotate about ẑ by angle α.
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Describing orientation
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Standard conventions: use Euler angles

1 Rotate about ẑ by angle α.
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Describing orientation

x’
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z’α
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Standard conventions: use Euler angles

1 Rotate about ẑ by angle α.
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Describing orientation

x’

y’

z’

Standard conventions: use Euler angles

1 Rotate about ẑ by angle α.
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Describing orientation

β
x’

y’

z’

Standard conventions: use Euler angles

1 Rotate about ẑ by angle α.

2 Rotate about x̂′ by angle β.
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Describing orientation

z’’
y’’

x’’

β
x’

y’

z’

Standard conventions: use Euler angles

1 Rotate about ẑ by angle α.

2 Rotate about x̂′ by angle β.
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Describing orientation

z’’
y’’

x’’

x’

y’

z’

Standard conventions: use Euler angles

1 Rotate about ẑ by angle α.

2 Rotate about x̂′ by angle β.
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Describing orientation

z’’
y’’

x’’

Standard conventions: use Euler angles

1 Rotate about ẑ by angle α.

2 Rotate about x̂′ by angle β.
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Describing orientation

γz’’
y’’

x’’

Standard conventions: use Euler angles

1 Rotate about ẑ by angle α.

2 Rotate about x̂′ by angle β.

3 Rotate about ẑ′′ by angle γ.
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Describing orientation

X

Y

Z

γz’’
y’’

x’’

Standard conventions: use Euler angles

1 Rotate about ẑ by angle α.

2 Rotate about x̂′ by angle β.

3 Rotate about ẑ′′ by angle γ.
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Describing orientation

X

Y

Z Standard conventions: use Euler angles

1 Rotate about ẑ by angle α.

2 Rotate about x̂′ by angle β.

3 Rotate about ẑ′′ by angle γ.
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Describing orientation

X

Y

Z

z

y

x

Standard conventions: use Euler angles

1 Rotate about ẑ by angle α.

2 Rotate about x̂′ by angle β.

3 Rotate about ẑ′′ by angle γ.
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Describing orientation

X

Y

Z

z

y

x

Standard conventions: use Euler angles

1 Rotate about ẑ by angle α.

2 Rotate about x̂′ by angle β.

3 Rotate about ẑ′′ by angle γ.

Other conventions: zyz , xzx , etc..
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Describing orientation

X

Y

Z

z

y

x

Standard conventions: use Euler angles

1 Rotate about ẑ by angle α.

2 Rotate about x̂′ by angle β.

3 Rotate about ẑ′′ by angle γ.

Other conventions: zyz , xzx , etc..

Problem 44: Euler angles

In the zxz convention, find the Euler angles (α, β, γ) required to
bring the axes to new orientations X̂ = ẑ, Ŷ = x̂ and Ẑ = ŷ.
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Infinitesimal rotations

An infinitesimal rotation by an angle δ about ẑ is given by

Mz(δ) = I + δ





0 −1 0
1 0 0
0 0 0



 = I + δGz .

An infinitesimal rotation by an angle δ about x̂ is given by

Mx(δ) = I + δ





0 0 0
0 0 −1
0 1 0



 = I + δGx .

Similarly, the rotation about ŷ by infinitesimal angle δ can be
written as My (δ) = I + δGy . A simple calculation gives the Lie
bracket (also called the commutator)

GzGx − GxGz ≡ [Gz ,Gx ] =





0 0 1
0 0 0
−1 0 0



 = Gy .
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Algebras and representations

The abstract algebra of three quantities J1, J2 and J3

[Jα, Jβ] = −iǫαβγJγ

can be satisfied by many different choices of matrices for the three
quantities. Each of these is a representation. We started with the
3-dimensional anti-Hermitean and traceless representation
Jγ ≡ Gγ = ǫijγ . There is also a trivial representation of 1× 1
matrices J1 = J2 = J3 = 0. This is not a faithful representation.

Problem 45: Pauli matrices

Use the Pauli matrices,

σ1 =

(

0 1
1 0

)

σ2 =

(

0 −i

i 0

)

σ3 =

(

1 0
0 1

)

,

which are Hermitean, to create a representation of the algebra.
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Exponentiation of matrices

Problem 46: Pauli matrices

Exponentiate the Pauli matrices, σα. Write the exponentials
D2(ψα) = exp(iψασα) as a linear combination of the unit matrix
and σα. What property of the Pauli matrices makes this possible?

Problem 47: Rotation matrices

Exponentiate the rotation matrices, Gα. Can one write the
exponentials D3(ψα) = exp(iψαGα) as a linear combination of the
unit matrix and Gα?

Problem 48: Vector spaces

Do the exponentials of linear combinations of the elements of the
algebra form a group? If so, then what is the action of this group
on the 2-dimensional vector space acted on by D2? How is this
related to the action of D3 on its 3-dimensional vector space?
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Vector representation of infinitesimal rotations

Clearly to linear order we have,

Mx(δx)Mz(δz)My (δy ) = I +
∑

k

δkGk ,

i.e., infinitesimal rotations commute. The components of Gk are
given by ǫijk . For a vector W rotated to W′ we find
W ′

i = Wi + ǫijkWjδk , so that

∂Wi

∂δj
= −ǫijkWk .

If the rotation angle changes with time, then one can write

Ẇi = −
∑

j

φ̇j
∂Wi

∂φj
= −ǫijk φ̇jWk i .e. Ẇ = −ω ×W.

Here ω is the angular velocity.
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Transformation to non-inertial frames

If the frame A is inertial and B is non-inertial, and the origin is
fixed in both, then one finds the transformation of velocity,
vB = vA + ω × x. Another derivative gives

v̇B = v̇A + ω × vB = v̇A + 2ω × vA + ω × (ω × x).

The last two terms are entirely due to changing to a non-inertial
frame— the second term is the centripetal acceleration, the first
the Coriolis acceleration

Problem 49: Centripetal acceleration

The earth’s rotation period is approximately 24 hours, and its
radius is 6371 Km. Find the ratio χ/g where χ is the centripetal
acceleration and g is the acceleration due to gravity. Search for
the rotation periods, masses and radii of the remaining 7 planets in
the solar system and report χ/g for those bodies.
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Some problems

Problem 50: The bathtub fallacy

Fill a basin with water before letting it drain out. What is the
magnitude of Coriolis acceleration on the water. Look up the
viscosity of water and check whether the Coriolis acceleration can
be damped out by viscous forces alone.

Problem 51: Coriolis acceleration

A hurricane moves along the surface of the earth with velocity v

initially in the north-south direction at 15 degrees latitude.
Integrate the equations of motion in the earth-fixed frame
assuming that there are no forces acting on the hurricane. How
does the track change if it starts from the same position and same
speed but the direction of initial velocity change? Is it possible for
the hurricane to reverse direction?
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The choice of origin

In a frame rotating with angular velocity ω (with respect to an
inertial frame), take the point x which is moving with velocity be
v. Now take a new frame whose origin is shifted by a. In this
frame all quantities have values denoted by primed quantities— x′,
v′ and ω′.
Clearly, x = x′ + a. If the velocity at that point in an inertial frame
is v, then v = v + ω × a+ ω × x′. We also have v′ = v + ω′ × x′.
This gives

ω′ = ω, and v′ = v + ω × a.

Since the velocity of a body depends on the choice of the origin of
the body system of coordinates, we need to specify it before
proceeding. We will choose to work with the origin of the body
system fixed at the CM of the body.
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The kinetic energy

The kinetic energy of a system of N rigidly connected particles of
masses mα is

T =
1

2

N
∑

α=1

mαv
2
α =

1

2

N
∑

α=1

mα(V + ω × rα)
2,

where V is the velocity of the CM measured in the (inertial) space
frame, and rα is the position of the particle in the body frame.
The cross term is zero, since V · ω × rα = rα · V × ω. Since the
last cross product is independent of α, it can be pulled outside the
sum, giving the cross term (V × ω)

∑

mαrα. The sum is zero,
since the origin is at the CM.
The square of the first term gives the familiar result

Tlin =
1

2
V 2

N
∑

α=1

mα =
1

2
MV 2.
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The inertia tensor

For the square of the cross product we use the identity

ǫijkǫilm = δjlδkm − δjkδlm.

This allows us to write the second term in the kinetic energy as

Trot =
1

2
Ikmωkωm, where Ikm =

N
∑

α=1

(r2δkm − rk rm).

I is called the inertia tensor, and is a 3× 3 matrix. Its eigenvectors
are special directions within the rigid body called the principal
axes. The eigenvalues of the tensor, I1, I2 and I3, are called the
principal moments of inertia.
The Lagrangian in the space frame is

L =
1

2
MV 2 +

1

2
Iijωiωj − U(R,φ),

where U is the external potential within which the body moves.
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Some problems

Problem 52: A rigid system of particles

Take a system of three particles fixed rigidly to each other. In one
body frame they have coordinates r1 = (0, 0, 0), r2 = (1, 0, 0) and
r3 = (0, 1, 1)/

√
2. Assume that they have equal masses, which we

take to be the unit of mass in the problem. Find the inertia tensor
in the CM of the particles, the principal moments of inertia and
the principal axes.

Problem 53: Moments of inertia

Find the inertia tensor of a cone (height L, opening angle ψ) and
cylinder (height L, radius r). Find the principal moments and axes.
Using only the dynamics of these objects, is it possible to
distinguish the shape?
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Forces on a rigid body

If the parts of a rigid body always have a fixed relation to each
other, i.e., xij are constant, then we must assume that the only
forces between them are forces of constraints. The forces of
constraint have to act instantaneously, otherwise there could be
temporary changes in xij . Hence, in special relativity there can be
no rigid bodies!
The dynamics of a rigid body without external forces acting on it is
very simple. When U = 0, the CM moves in a straight line,
R(t) = R(0) + Vt, where R(0) is the initial position of the CM,
and V is its initial velocity. The orientational coordinates are also
cyclic and change periodically with time, φi (t) = φi (0) + ωi t,
where φi (0) is the initial value of one of these angles and ωi is the
corresponding angular velocities. Also, V and ωi are constant.
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The angular momentum

The angular momentum L is the momentum conjugate to the
angular coordinates. As usual, we can write

Li =
∂L

∂ωi

, which implies L = Iω.

In general the angular momentum is not parallel to the axis of
rotation of the body.
Since I defines three independent principal axes, ûi , one can
decompose any vector into a linear sum of components alone each
of these axes. So, using the decomposition ω = ωi ûi , we find that

L = Iiωi ûi .

In the special case when two of the ωi vanish, i.e., the angular
velocity is initially in the direction of one of the principal axes, then
L is parallel to the ω.
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