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Deformations of continuous media

If a body is deformed, we say that the point which originally had
coordinates x has coordinates x′ are the deformation. The
deformation itself is given by u = x′ − x. The strain is a measure
of the deformation of the body. In order to make a quantitative
definition, we begin by measuring lengths of line elements in the
body. The length of a piece of the material may change:

dl ′2 = |dx′|2 = dxidxi + 2
∂ui
∂xk

dxidxk +
∂ui
∂xj

∂ui
∂xk

dxjdxk

The factor 2 in the term in the middle comes after interchanging
dummy indices.
The strain tensor measures changes of lengths in various direction:

∆dl2 = dl ′2−dl2 = 2uijdxidxj , uij =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

+
∂ui
∂xj

∂ui
∂xk

)

.
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Strain

The instantaneous deformation of a body defines a tensor field uij .
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Properties of the strain tensor

Since strain is a symmetric second rank tensor, it is possible to
choose axes so that it is diagonal. With these principal axes one
has

dl ′2 = (δij+2uij)dxidxj = (1+2u1)dx
2
1+(1+2u2)dx

2
2+(1+2u3)dx

2
3 .

In other words, the strain corresponds to stretching or compression
along certain principal directions.
Clearly, the change in the volume due to a strain is given by

∆dV = dV ′ − dV = det udV = u1u2u3dV .

If the dimensions of the body are large compared with the strain at
any point, then one can linearize the expression for the strain:

uij ≃
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

.

The linear expression may break down for thin rods or plates.
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Analogy to a metric

A metric tensor is a symmetric tensor of rank two which allows us
to define lengths, through the formula

dl2 = gijdxidxj .

In Euclidean space with Cartesian coordinates the metric tensor is
gij = δij . A body under strain can be thought of as a curved space
with a changed metric tensor,

dl ′2 = g ′

ijdxidxj , where g ′

ij = gij + 2uij .

Problem 65: Exploring the analogy

In a curved space defining a derivative operator involves
introducing parallel transporters called Christoffel symbols. Explore
the definition of derivatives in the curved space of the strained
body. What is the physical interpretation of the Christoffel
symbols?
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The stress tensor

When a body is strained there are clearly internal forces which try
to return it to its original shape: if the external forces causing the
strain are removed, then the body returns to its original shape.
These forces are short ranged (except when electric fields are
produced by the strain).
Since the net force on every small volume vanishes, we can write
this as an integral formula by introducing the force on a small
volume element, f, through

0 = Fi =

∫

dV fi =

∮

σijdsi .

Here we used Stoke’s theorem to convert the volume integral into
an integral over the surface bounding that volume. In order to do
this, we need the divergence formula fi = ∂jσij . This new tensor of
rank two is called the stress tensor.
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Internal moments

The equilibrium of every element of the body also requires that the
net moment at each point vanishes. In other words

0 = Mij =

∫

dV (xi fj − xj fi ) =

∫

dV

(

xi
∂σjk
∂xk

− xj
∂σik
∂xk

)

=

∫

dV
∂

∂dxk
(xiσjk − xjσik)−

∫

dV

(

∂xi
∂xk

σjk −
∂xj
∂xk

σik

)

=

∮

dsk(xiσjk − xjσik)−

∫

dV (σij − σik)

This is a surface integral if the tensor is symmetric.
More generally, the second integral vanishes if the difference is a
divergence of a rank-3 tensor with suitable symmetries. However,
since the only physical quantity that we construct from σij is the
net force, these symmetries can always be imposed to make the
stress tensor symmetric.
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Equilibrium of bodies

If external forces F act on every unit volume of a body, then the
condition for the equilibrium of the body is

∂σij
∂xj

= Fi .

The diagonal elements of σij correspond to hydrostatic pressure.
Assume that the force acting along the normal to a surface element
dsi is pdsi , then the stress tensor must be given by σij = −pδij .
If one works in a frame where there are off-diagonal elements of
the stress tensor, then these correspond to shear forces acting
along the surface of the body. In the most general case one has
pressure as well shear acting on deformable bodies.
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The energetics of a deformed body

If the displacements ui in a deformed body change by an amount
δui , then the work done by the internal forces is

δW =

∫

dV δui∂jσij =

∮

dsjδuiσij −

∫

dVσij∂jδui .

If there are no surface deformations, then

δW = −
1

2

∫

dVσij(∂jδui + ∂iδuj) = −

∫

dVσijuij .

As a result, one may write the internal energy dU = TdS + σijduij ,
the Helmholtz free energy, dF = −SdT + σijduij , and the Gibbs
free energy dG = −SdT − uijdσij . As a result, in a state of
thermodynamic equilibrium one may write

σij =
∂F

∂uij

∣

∣

∣

∣

T

, and uij =
∂G

∂σij

∣

∣

∣

∣

T

.
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Thermodynamics of a deformed body

Thermodynamics is applicable if the stresses and strains are
variables of state, i.e., on reversing the strain the body returns to
an earlier state. This regime of deformations is called elastic. If the
strains are large, then the body may permanently deform. This
regime of deformations is called plastic. In the elastic regime,
σij = 0 when uij = 0, so the expression for the free energy cannot
contain a linear term. The quadratic term is expected to be a
rotational scalar, so one may write

F = F0 +
λ

2
u2ii + µu2ij ,

where the constants λ and µ are called Lamé coefficients.
The state of thermodynamic equilibrium is obtained by minimizing
the free energy. When the strains vanish, this corresponds to
F = F0. For finite strains, the free energy must be higher. This
implies that λ > 0 and µ > 0 for thermodynamic stability.
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Hooke’s law

Alternatively, one may decompose the strain into a pure shear and
a pure compression through the formula

uij =

(

uij −
1

3
δijukk

)

+
1

3
δijukk .

Then the free energy may be written as

F = F0 +
K

2
u2ii + µ

(

uij −
1

3
δijukk

)2

.

K is called the bulk modulus or the modulus of compressibility and
µ is called the shear modulus.
We can now write dF = [Kukkδij + 2µ(uij − ukkδij/3)]duij . Using
this we obtain Hooke’s Law

σij = Kukkδij + 2µ

(

uij −
1

3
ukkδij

)

.

This is valid only within the quadratic approximation to F .
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A simple case

Solving a problem of elastic deformations means one should be
able to write down all the components of the stress and strain
tensors using information on external forces and the elastic moduli.

Hydrostatic equilibrium

Assume that a body is subjected to an uniform external pressure
P , so that the tensor fields uij and σij are constant through the
body. Since the shear on the body vanishes, uij = Uδij . The strain
tensor is given by σij = 3KUδij . The condition of equilibrium of
forces is σij = −Pδij , since the force on every surface within the
solid is given by the inward directed force equal to the pressure
times the area of the surface. The solution of the problem is
U = −P/(3K ). The strain is known once P and K are given.
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A rod under tension (1)

Take a rod with cross sectional area A, and choose the z-axis to be
aligned in the long direction. Assume that the rod is under
constant tension due to applied outward forces PA on each end of
the rod. Assume also that the stresses and strains are uniform
through the body. Since there are no sideward forces, one has
σijnj = 0 for every sideward normal. Also, equilibrium at the ends
implies σzz = P . So the strain tensor has the form

σ =





0 0 0
0 0 0
0 0 P



 .

From Hooke’s law we find uii = σii/(3K ). Substituting this back
gives

σij =
1

3
σkkδij + 2µ

(

uij −
1

9K
σkkδij

)

.

This allows us to solve for uij .
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A rod under tension (2)

Solving for uij gives

uij =
(σkk
9K

)

δij +
1

2µ

(

σij −
1

3
σkkδij

)

.

This formula is more general than the specific case we will apply it
to. Sometimes this form is called Hooke’s law.
In the case at hand we find

uzz =
P

3

(

1

3K
+

1

µ

)

, uxx = uyy =
P

3

(

1

3K
−

1

2µ

)

.

The Young’s modulus is defined to be

Y =
P

uzz
, hence Y =

9Kµ

3K + µ
.

Poisson’s ratio is defined as

σ = −
uxx

uzz
=

1

2

3K − 2µ

3K + µ
.
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Some problems

Problem 66: Elevator cables

Take an elevator cable of transverse area A and a mass per unit
length ρ. Assume that it is of length L, being hung from a support
at the top and hanging vertically due to gravity. Neglect transverse
forces on the cable. The vertical downward force at any point
along the cable is due to the mass of all the material below it. At
the point of suspension the upward force is just balanced by the
mass of the full cable. Solve for the stresses and strains given that
these vary along the length of the cable.

Problem 67: A space elevator

A suggestion by Arthur Clarke for a space elevator is essentially
that one end of an elevator cable is in circular geostationary orbit
and the other end reaches down to the surface of the earth.
Compute the stresses and strains on this elevator cable.
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