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A clever canonical transformation

The motion of a mechanical system with D degrees of freedom can
be easily integrated if there are D conserved quantities. Examples
are: one dimensional systems with time-independent Hamiltonians,
the Kepler problem, motion of rigid bodies, etc..
One can exhibit this through a canonical transformation to a new
set of coordinates and momenta which are constant. If they are
constant, then

Q̇i =
∂H
∂Pi

= 0, and Ṗi = − ∂H
∂Qi

= 0.

It is sufficient to choose the transformed Hamiltonian, H, to be
zero. This implies that

H = H(qi , pi , t) +
∂S(qi ,Pi , t)

∂t
= 0,

where S is a generating function of the transformation.
Sourendu Gupta Classical Mechanics 2012: Lecture 17



Integrable systems Perturbation theory KAM Theory Keywords

The Hamilton-Jacobi equation

Using the fact that S generates pi , this equation becomes

H

(

qi ,
∂S

∂qi
, t

)

+
∂S

∂t
= 0, since pi =

∂S

∂qi
.

This is the Hamilton-Jacobi equation.
This first order differential equation has D + 1 variables, and
therefore, can be integrated with D + 1 constants of integration to
give the solution S(qi , αi , t). Since S does not appear in the
equations, but only its derivatives do, one of the constants of
integration is an additive constant. This is immaterial to the
dynamics, and hence can be dropped. Retaining D constants of
integration, αi , we can choose

Pi = αi , Qi =
∂S

∂αi

= βi , pi =
∂S

∂qi
.

The constants αi and βi are related to the initial conditions. This
solves the dynamics of the system.
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The generating function

Since
dS

dt
=

∂S

∂qi
q̇i +

∂S

∂t
= pi q̇i − H = L.

In other words, the generating function is the action,

S =

∫

Ldt.

.
When H is independent of time, then the only time dependence in

∂S

∂t
+ H

(

qi ,
∂S

∂qi

)

= 0,

is in the time derivative. Hence the solution must be of the form
S = W − α1t. So the equation becomes

H

(

qi ,
∂W

∂qi

)

= α1.

The new and old Hamiltonians are the same, and α1 is its value.
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More on time-independent Hamiltonians

For a time-independent Hamiltonian, the Hamilton-Jacobi equation
can be written in terms of W , which generates a quite different
canonical transformation:

pi =
∂W

∂qi
and Qi =

∂W

∂αi

, with H(pi , qi ) = α1.

The canonical equations after transformation are

Pi = αi , Q̇i = δi1, Qi = tδi1 + βi .

One is at liberty to choose Pi to be some functions of αi , which
would also lead to conserved values of Pi . However, then the
canonical equation would not lead to Q̇i = 0. Instead one would
find the Qi to be cyclic coordinates; these are called action-angle
variables. Phase space trajectories would then lie on tori. Such
systems are said to be integrable.
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Tori in phase space

L

θ

Sourendu Gupta Classical Mechanics 2012: Lecture 17



Integrable systems Perturbation theory KAM Theory Keywords

Two problems

Problem 68: Small oscillations

Investigate the harmonic oscillator in D dimensions and show that
it has D constants of motion. Apply the Hamilton-Jacobi
equations to solve this problem and hence show that small
oscillations of non-rigid systems is an integrable problem.

Problem 69: The Kepler problem

Solve the Kepler problem using the Hamilton Jacobi method. Is
motion in a 1/r potential integrable in all dimensions of space?
Investigate one, two, three and four dimensions and try to find the
number of conserved quantities in each in order to answer this
question.
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Analogy with optics

ray

w
avefront

For time-independent Hamiltonians,
if S = σ, then W = σ − Et, i.e., the
change in surfaces of constant S lead
to travelling wavefronts of constant
W , with dW = Edt, since motion is
periodic.

However, along the ray dW = ∇Wds so the phase velocity of the
wave:

u =
ds

dt
=

W

∇W
=

E
√

2m(E − V )
=

E√
2mT

,

provided that the kinetic energy is quadratic in momenta.
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Exact extension of the Hamilton-Jacobi method

Write the Hamiltonian of the problem at hand, H, as the sum of
the Hamiltonian of an integrable system, H0, and the remaining
terms,

H(qi , pi , t) = H0(qi , pi , t) + ∆H(qi , pi , t).

All three Hamiltonians, H, H0 and ∆H act on the same phase
space. We know a canonical transformation {qi , pi} → {βi , αi}
generated by S(qi , αi , t) which solves the dynamics of H0.
The transformation generated by S is canonical irrespective of the
Hamiltonian, so the Hamiltonian of the perturbed problem is

K (βi , αi , t) = H0 +
∂S

∂t
+∆H = ∆H(βi , αi , t).

As a result, the equations of motion of the new coordinates and
momenta are

α̇i = −∂∆H

∂βi
, and β̇i =

∂∆H

∂αi

.
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A simple example: first step

For the harmonic oscillator problem, use the free particle
Hamiltonian as the integrable system, i.e., H0 = p2/2m. So the
Hamilton-Jacobi equation for this problem is

1

2m

(

∂S

∂x

)2

+
∂S

∂t
= 0,

which, we know, has the solution S = αx − α2t/(2m). The
transformed momentum is α. So the new coordinate is

β =
∂S

∂α
= x − αt

m
.

As we already know, the new coordinates are precisely the initial
conditions on p and x . We can exhibit this by inverting the
equation for β to get

x = β +
αt

m
.
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A simple example: second step

The perturbation Hamiltonian is V = mω2x2/2. In terms of the
new coordinates, we have

∆H(β, α, t) =
mω2

2

(

β +
αt

m

)2

.

As a result, the equations of motion now become

α̇ = −mω2
(

β +
αt

m

)

, and β̇ = ω2t
(

β +
αt

m

)

.

These equations are exact, and can be solved exactly. In order to
do that note first that

β̇ +
α̇t

m
= 0.

As a result, one obtains

α̈ = −ω2α.

So the solution for α is exactly the simple harmonic motion that
one expects. Prove that the solution for x is also harmonic.
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Perturbation theory

It often turns out to be hard to solve the exact equations

α̇i = −∂∆H

∂βi
, and β̇i =

∂∆H

∂αi

.

Instead we want to develop an approximation for the case when
∆H is small. This seems to be straightforward when we can write
∆H = λh, where λ ≪ 1, then we can try the series expansions

αi =
∞
∑

j=0

λjα
(j)
i , and βi =

∞
∑

i=0

λjβ
(j)
i .

The terms α
(0)
i and β

(0)
i are solution of the dynamics of H0, and

the series is called a perturbation series. We need to insert the
series expansion into the expression for ∆H and equate equal
powers of λ in the canonical equations.
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The same simple example by perturbation

Defining λ = mω2, we get ∆H = λ(β + αt/m)2/2. Now inserting
the series expansions for β and α into this, we get

∆H =
λ

2

(

β(0) +
α(0)t

m

)2

+O
(

λ2
)

.

So the leading order perturbative equations are α̇(0) = β̇(0) = 0, as
expected. The next order equations are

α̇(1) = −
(

β(0) +
α(0)t

m

)

, and β̇(1) =
t

m

(

β(0) +
α(0)t

m

)

.

Choosing, for simplicity, the initial condition β(0) = 0, these
integrate to the leading terms in the series expansions of circular
functions, i.e.,

α(1) = −α(0)t2

2m
, and β(1) =

α(0)t3

3m2
.
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Secular terms

The example of the harmonic oscillator is technically simple, and
we know from the exact solution that the problem is well behaved.
However, the perturbative solution illustrates one of the main
technical difficulties with perturbation theory. Note that both α(1)

and β(1) increase unboundedly with t. Terms in the perturbative
solution which grow with t are called secular terms.

The appearance of secular terms put into question our initial
assumption that α(0) and β(0) provide good initial approximations
to the solution. KAM theory, to be discussed later, tells us whether
the series expansion in λ merely distorts the tori or destroys them.
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Perturbation of orbits

One may be more interested in the perturbation of the elements of
an orbit than in the orbit itself: for example, how the eccentricity
of a Keplerian orbit changes due to a perturbation. The elements
of the orbit are functions on phase space, ζk(βi , αi ). So their time
dependence is given exactly by

ζ̇k = [ζk ,∆H] = ∇ξζkJ∇ξ∆H = ∇ξζkJ∇ξζl
∂∆H

∂ζl
= [ζk , ζl ]

∂∆H

∂ζl
.

A perturbation theory can be set up, as before, by making series
expansions in λ and matching terms in equal powers of λ.

Problem 70: Precession of perihelia

The perihelia of Keplerian orbits are given by the Runge-Lenz
vector. For perturbations of Newton’s law of gravity by a term in
1/rn (fixed n) set up the equation for the motion of perihelia. Find
the first order perturbative solution for n = 2, 3 and 4.
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Variation of parameters

Consider a system in which some parameter, a, is slowly varying:
such as the length of a pendulum. For constant a, we can find
action-angle variables {β, α} such that the Hamiltonian is H(α, a).
Assume that this is obtained by a canonical transformation
S(q, β, a) instead of the usual S(q, α, a). When a varies, then the
appropriate Hamiltonian is

K (β, α, a) = H(α, a) +
∂S
∂t

= H(α, a) + ȧ
∂S
∂a

.

Clearly, then the variation of α is governed by

α̇ = −∂K

∂β
= −ȧ

∂

∂β

∂S
∂a

.

If a varies slowly, one can take it to be constant over the original
period of motion, T , and average this over that interval to get

α̇ = − ȧ

T

∫ T

0
dt

∂

∂β

∂S
∂a

+O(ȧ2, ä).
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Adiabatic invariants

Since S is the action, it increases by α in time T . Because S and
S are related by Legendre transforms, so does S. Hence S and its
derivatives can be expanded in a Fourier series over multiples of
the frequency 2π/T . They have no constant coefficient, and the
integral vanishes. This is therefore an adiabatic invariant.

Problem 71: Plasma confinement

Assume that a charged particle moves in a constant and nearly
uniform magnetic field, H(x). Also assume that it has initially a
very small velocity in the direction of the field. Show that when it
enters a region where the field strength is larger than it
encountered initially, the particle can be reflected. Use this
phenomenon to design a plasma bottle.
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Matching of Tori

Assume that there is an invariant torus T in phase space which
contains the motion of the system. If the angle variable is x , then
in time t under the action of the integrable Hamiltonian, H0, the
system moves to a new point P0(x) = x + 2πt. It is useful to work
in an extended phase space labelled by {x , t} and define
P0(x , t) = {x + 2πt, t}. Also assume that under the perturbed
Hamiltonian the new point is Pλ(x , t) = {x + 2πt + ǫf (x , t), t},
where λ is small.
If we try to match the trajectories of the original and unperturbed
system then we may have to change the coordinates as well as the
time. This involves a function

Φλ(x , t) = {x + λξ(x , t), t + λτ(t)}.
If such a mapping preserves the tori, then one must find that

Pλ(Φλ(x , t)) = Φλ(P0(x , t)).
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The commutative diagram

Φ

ΦP
Pλ

0

The diagram above illustrates the meaning of the desired equality

Pλ(Φλ(x , t)) = Φλ(P0(x , t)).
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Matching conditions

The left hand side of the desired equality is

Pλ(Φλ(x , t)) = {x + λξ(x , t) + 2πt + 2πλτ(t)

+λf (x + λξ(x , t), t + λτ(t)), t + λτ(t)}.

The right hand side gives

P0(Φλ(x , t)) = {x + 2πt + λξ(x + 2πt, t),+λf (x , t), t + λτ(t)}.

Equating them reduces the desired equation into

ξ(x + 2πt, t)− ξ(x , t) = 2πτ(t) + f (x + λξ(t), t + λτ(t)).

This can be simplified by expanding each function in a series in λ
and equating equal powers, as before. The result is

ξ0(x + 2πt, t)− ξ0(x , t) = 2πτ0(t) + f0(x , t).
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Large denominators

This can be solved by Fourier transforming in the angle variable—

ξ0(x , t) =
∑

k

ξ0(k , t)e
ikt , and f0(x , t) =

∑

k

f0(k , t)e
ikt ,

if the perturbation has commensurate frequencies. Since τ0(t) is
independent of x , it is a term in k = 0. The equation

ξ0(x + 2πt, t)− ξ0(x , t) = 2πτ0(t) + f0(x , t)

then gives the solution

ξ0(k , t) =
f0(k , t) + 2πτ0(t)δk0

exp(2πikt)− 1
.

Clearly, when the perturbing function f0 is small the solution is
small except when the denominator is large. Large denominators
occur when kt is integer. It seems possible that these can destroy
invariant tori.
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The Kolmogorov-Arnold-Moser Theorem

In general each invariant torus corresponds to motion with a
certain frequency (and its harmonics). On the other hand, the
perturbation Hamiltonian will, in general, have only a few fixed
frequencies. The KAM theorem states that only those tori which
correspond to motion at rational harmonics of the perturbation will
be destroyed. The intuition gained in the above analysis is correct.
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The Kolmogorov-Arnold-Moser Theorem

In general each invariant torus corresponds to motion with a
certain frequency (and its harmonics). On the other hand, the
perturbation Hamiltonian will, in general, have only a few fixed
frequencies. The KAM theorem states that only those tori which
correspond to motion at rational harmonics of the perturbation will
be destroyed. The intuition gained in the above analysis is correct.
This has interesting testable implications for the solar system—

1 Unless the earth-moon-sun system is unstable, the length of
the day and the year must be incommensurate. Similarly, the
lengths of the lunar month and the year have to be
incommensurate.

2 No moons of any planet will have rational periods with
respect to the orbital period of the parent planet.

3 No asteroids will be observed with periods which are rational
multiples of the orbital period of Jupiter.
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Cantori

Some of the initial tori are distorted by perturbation, others are
destroyed.
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Cantori

Some of the initial tori are distorted by perturbation, others are
destroyed. The width of the unstable region increases with λ.
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Cantori

Some of the initial tori are distorted by perturbation, others are
destroyed. The width of the unstable region increases with λ. The
structure in the unstable region is fractal, like a Cantor set, hence
sometimes called cantori.
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