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The Hamiltonian

The change in the Lagrangian due to a virtual change of
coordinates is

dL =
∑

k

∂L

∂qk
dqk +

∂L

∂q̇k
dq̇k .
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The Hamiltonian

The change in the Lagrangian due to a virtual change of
coordinates is

dL =
∑

k

ṗkdqk + pkdq̇k .
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The Hamiltonian

The change in the Lagrangian due to a virtual change of
coordinates is

dL =
∑

k

ṗkdqk + d(pk q̇k)− q̇kdpk .
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The Hamiltonian

The change in the Lagrangian due to a virtual change of
coordinates is

dL =
∑

k

ṗkdqk + d(pk q̇k)− q̇kdpk .

Using this, one can define a function, called the Hamiltonian,
H(pk , qk), by eliminating q̇k to write

dH = d

[

∑

k

pk q̇k − L

]

=
∑

k

q̇kdpk − ṗkdqk .

Since pk and qk are independent variables, one has Hamilton’s
equations

q̇k =
∂H

∂pk
and ṗk = −

∂H

∂qk
.
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An example

For a single particle moving in a potential, one can write

L =
1

2
m|ẋ|2 − V (x), and p =

∂L

∂ẋ
= mẋ.

Eliminating ẋ, the Hamiltonian is

H = p · ẋ− L =
1

2m
|p|2 + V (x).

Hamilton’s equations are

ẋ =
1

m
p, and ṗ = −∇V (x).

These are exactly the usual equations of motion.
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Poisson brackets

Take any two functions on phase space, f (qk , pk) and g(qk , pk).
Then we define the Poisson bracket of these two functions as

[f , g ] =
∑

k

[

∂f

∂qk

∂g

∂pk
−

∂g

∂qk

∂f

∂pk

]

.

Clearly, interchanging f and g in the expression on the right
changes the sign. So [f , g ] = −[g , f ]. Also, because of this
antisymmetry, [f , f ] = 0.
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Poisson brackets

Take any two functions on phase space, f (qk , pk) and g(qk , pk).
Then we define the Poisson bracket of these two functions as

[f , g ] =
∑

k

[

∂f

∂qk

∂g

∂pk
−

∂g

∂qk

∂f

∂pk

]

.

Clearly, interchanging f and g in the expression on the right
changes the sign. So [f , g ] = −[g , f ]. Also, because of this
antisymmetry, [f , f ] = 0.
Clearly, the time derivative of f is given by the expression

df

dt
=

∑

k

[

∂f

∂qk
q̇k +

∂f

∂pk
ṗk

]

=
∑

k

[

∂f

∂qk

∂H

∂pk
−

∂f

∂pk

∂H

∂qk

]

= [f ,H].

We have used the EoM to get the second line from the first.
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Time independent Hamiltonians are conserved

More generally, for any time-dependent function on phase space
f (qk , pk , t), one has

df

dt
=

∂f

∂t
+ [f ,H].

It follows trivially that, for the Hamiltonian itself we have the
identity

dH

dt
=

∂H

∂t
,

so that if the Hamiltonian is time independent, then it is conserved.
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Time independent Hamiltonians are conserved

More generally, for any time-dependent function on phase space
f (qk , pk , t), one has

df

dt
=

∂f

∂t
+ [f ,H].

It follows trivially that, for the Hamiltonian itself we have the
identity

dH

dt
=

∂H

∂t
,

so that if the Hamiltonian is time independent, then it is conserved.
Other identities for the Poisson bracket include the Jacobi identity

[[f , g ], h] + [[g , h], f ] + [[h, f ], g ] = 0.

Problem 11

Prove the Jacobi identity.
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Elementary Poisson brackets

Since all the qk and pk are independent variables, their derivatives
with respect to each other vanish. So we have [qj , qk ] = 0 and
[pj , pk ] = 0. Also,

[qi , pj ] =
∑

k

[

∂qi
∂qk

∂pj
∂pk

−
∂pj
∂qk

∂qi
∂pk

]
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Elementary Poisson brackets

Since all the qk and pk are independent variables, their derivatives
with respect to each other vanish. So we have [qj , qk ] = 0 and
[pj , pk ] = 0. Also,

[qi , pj ] =
∑

k

[

∂qi
∂qk

∂pj
∂pk

−
∂pj
∂qk

∂qi
∂pk

]

=
∑

k

δikδjk
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Elementary Poisson brackets

Since all the qk and pk are independent variables, their derivatives
with respect to each other vanish. So we have [qj , qk ] = 0 and
[pj , pk ] = 0. Also,

[qi , pj ] =
∑

k

[

∂qi
∂qk

∂pj
∂pk

−
∂pj
∂qk

∂qi
∂pk

]

=
∑

k

δikδjk = δij .
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Elementary Poisson brackets

Since all the qk and pk are independent variables, their derivatives
with respect to each other vanish. So we have [qj , qk ] = 0 and
[pj , pk ] = 0. Also,

[qi , pj ] =
∑

k

[

∂qi
∂qk

∂pj
∂pk

−
∂pj
∂qk

∂qi
∂pk

]

=
∑

k

δikδjk = δij .

The EoM can be written in the form q̇i = [qi ,H] and ṗi = [pi ,H].
Using the definition of the Poisson bracket, one sees that these
reproduce the canonical equations. If some momenta are
conserved, then one clearly has ∂H/∂qi = 0. The Hamiltonian
does not depend on the corresponding coordinates, i.e., we have a
symmetry.
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Angular momenta rotate vectors

We write the components of the angular momentum L = x× p

using the Levi-Civita tensor as Li = ǫijkxjpk . In order to evaluate
the Poisson bracket [Li , xj ] we note that for any three functions on
phase space, f , g , h,

[fg , h] = f [g , h] + g [f , h].

Using this we find

[Li , xj ] = ǫiαβ[xαpβ , xj ]

= ǫiαβ {xα[pβ , xj ] + pβ[xα, xj ]}

= −ǫiαβxαδβj = ǫijkxk .

This is the definition of a vector function on phase space.

Problem 12

Prove that the momentum p is a vector function on phase space.
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Angular momenta rotate vectors

We write the components of the angular momentum L = x× p

using the Levi-Civita tensor as Li = ǫijkxjpk . In order to evaluate
the Poisson bracket [Li , xj ] we note that for any three functions on
phase space, f , g , h,

[fg , h] = f [g , h] + g [f , h].

Using this we find

[Li , xj ] = ǫiαβ[xαpβ , xj ]

= ǫiαβ {xα[pβ , xj ] + pβ[xα, xj ]}

= −ǫiαβxαδβj = ǫijkxk .

This is the definition of a vector function on phase space.
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Prove that the momentum p is a vector function on phase space.
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Poisson brackets of angular momenta

The Poisson bracket of two components can be easily worked out

[Li , Lj ] = ǫiαβǫjγδ[xαpβ , xγpδ].

Using the identity for Poisson brackets of products, we can write

[Li , Lj ] = ǫiαβǫjγδ {xα[pβ , xγpδ] + pβ[xα, xγpδ]} .

Using the identity a second time we can write

[Li , Lj ] = ǫiαβǫjγδ {xαxγ [pβ , pδ] + xαpδ[pβ , xγ ]

+pβxγ [xα, pδ] + pβpδ[xα, xγ ]}

= ǫiαβǫjγδ {−xαpδδβγ + pβxγδαδ}
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Poisson brackets of angular momenta

The Poisson bracket of two components can be easily worked out

[Li , Lj ] = ǫiαβǫjγδ[xαpβ , xγpδ].

Using the identity for Poisson brackets of products, we can write

[Li , Lj ] = ǫiαβǫjγδ {xα[pβ , xγpδ] + pβ[xα, xγpδ]} .

Using the identity a second time we can write

[Li , Lj ] = ǫiαβǫjγδ {xαxγ [pβ , pδ] + xαpδ[pβ , xγ ]

+pβxγ [xα, pδ] + pβpδ[xα, xγ ]}

= ǫiαβǫjγδ {−xαpδδβγ + pβxγδαδ}
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The angular momentum is a vector

We have the tensor identity

ǫiαβǫjγβ = δijδαγ − δiγδjα,

where we have used the summation convention— repeated indices
are summed. Using this we reduce the Poisson bracket

[Li , Lj ] = ǫiαβǫjγδ {−xαpδδβγ + pβxγδαδ}

= ǫiαβǫjγβ {xαpγ − xγpα}

= {δijδαγ − δiγδjα} {xαpγ − xγpα}

= xipj − xjpi = ǫijkLk .

This completes the demonstration that the angular momentum
itself is a vector.
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The angular momentum is a vector

We have the tensor identity

ǫiαβǫjγβ = δijδαγ − δiγδjα,

where we have used the summation convention— repeated indices
are summed. Using this we reduce the Poisson bracket

[Li , Lj ] = ǫiαβǫjγδ {−xαpδδβγ + pβxγδαδ}

= ǫiαβǫjγβ {xαpγ − xγpα} renaming dummy indices

= {δijδαγ − δiγδjα} {xαpγ − xγpα}

= xipj − xjpi = ǫijkLk .

This completes the demonstration that the angular momentum
itself is a vector.
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