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Symmetries

Symplectic invariants

In terms of the 2D-dimensional vector in phase space,
x = (q1, q2, · · · , qD , p1, p2, · · · , pD)

T , the Poisson bracket is

[f , g ]x = ∇f · J · ∇g .

Clearly, under a canonical transformation, ξ(x), with Jacobian M,
one has

[f , g ]ξ = ∇f ·MT JM · ∇g = ∇f · J · ∇g = [f , g ]x .

Therefore, the Poisson bracket is a symplectic invariant.
The phase space volume element transforms through the
determinant of the Jacobian,

d2Dξk = |M|d2Dxk .

But since |M| = |MT |, the invariance relation MJMT = J implies
that |M|2 = 1. As a result the phase space volume is also a
symplectic invariant.
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Symmetries

Infinitesimal Canonical Transformations

Earlier we wrote an ICT in terms of a generating function G(x) in
the form ξ = x+ ǫJ∇G(x). Now we note that for any phase space
function u(x),

[x, u] = ∇x · J · ∇u = J∇u, since ∇x = I .

So one can write the ICT as ξ = x+ ǫ[x,G].

Time evolution is a canonical transformation

Since Hamilton’s equations can be written as ẋ = [x,H], one can
write an infinitesimal time evolution in the form

x(t + dt) = x(t) + dt[x,H].

This is in the form of ICT with generating function H(x).

From this it follows that phase space volume is conserved under
time evolution. This is called Liouville’s theorem.
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Transformations of phase space functions

If u(x) is a phase space function, then its change under an ICT
generated by G is clearly given by

δu = ∇u · δx = ǫ∇u · J · ∇G = ǫ[u,G].

Momenta generate translations

Select G(x) = pi = xD+i . Then clearly δqj = ǫδij and δpj = 0.

Angular momenta generate rotations

Select G(x) = Ji = ǫimnqmpn. Then δqj = −ǫǫijkqk and
δpj = −ǫǫijkpk . Angular momenta are rotation generators.

Factoid: Define a product of two phase space functions u and v

through its Poisson bracket, i.e., u ⊗ v = [u, v ]. This product is
non-associative since [u[v ,w ]] 6= [[u, v ],w ]! The Jacobi identity is
a particular replacement of the law of associativity.
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Finite Canonical Transformations

A Taylor expansion gives

x(t + δt) = x(t) + ∆tẋ+
(∆t)2

2!
ẍ+ · · ·

= x(t) + ∆t[x(t),H] +
(∆t)2

2!
[[x(t),H],H] + · · ·

= x(t)e∆tH .

where the exponential stands for the series expansion shown in the
previous line. Similarly, the other generating functions can also be
written formally as exponentials with the same meaning

T (y) = exp(y · p), R(n̂, ψ) = exp(ψJ · n̂),

where T (y) is the operator which generates translations in space
by an amount y and R(n̂, ψ) generates rotations around the axis n̂
by the amount ψ.
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