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Radioactive decay chains

Density of radionuclides

Radioactive nuclei transmute from one to another through α emission or
β-decay. (γ-decay does not change the nucleus, merely takes it from an
excited to a lower state). It turns out that all nuclei in nature belong to
one of three decay chains [Decay]. If nk is the density of the k-th nucleus
in a chain, then the time dependence of nk is given by

dnk

dt
= αk−1nk−1 − αknk ,

where 1/αk is the half-life for the decay from the k-th to the k + 1-st
nucleus in the chain, and the unit of time is such that α1 = 1. Then

dn

dt
= An, where A =















−1 0 0 · · · 0
1 −α2 0 · · · 0
0 α2 −α3 · · · 0
...

...
...

...
0 0 0 · · · −αN














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Radioactive decay chains

The solution and the problem

These equations can be formally solved by many methods [King et al]:

1 One could simply treat the equations one-by-one to get
n1(t) = n1(0) exp(−α1t), etc..

2 One could integrate the differential equations numerically.

3 One could formally write n(t) = n(0) exp(At). (One could formally
define exp A = 1 + A + A2/2! + · · · .)

In any case, to answer any interesting question, (for example, given the
concentration of nuclei in the earth’s crust, can one estimate the
composition of the gas cloud from which the solar system formed?) one
has to compute the solutions numerically.
One immediately finds a problem. Some of the half lives are several
millions of years. Others are in fractions of seconds. Computing all of them
accurately seems difficult. Such a problem is said to be ill-conditioned.
We will investigate when the computation of exp(At) is difficult, and what
is a good way to do it even for ill-conditioned problems [van Loan].
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Radioactive decay chains

Generalization

This is one of a very large class of problems— that of linear ordinary
differential equations with constant coefficients. They can always be
reduced to exponentiating a matrix [Arnold].
Suppose one has a high-order ODE

dnx

dtn
+ a1

dn−1x

dtn−1
+ · · · anx = 0.

One can reduce this to a set of coupled first-order ODEs using the familiar
method of writing the Hamiltonian form of Newton’s equations. Introduce
the variables y1 = x and yk = dyk−1/dt for k = 2 up to n to reduce this
to a set of coupled first-order ODEs. The space of variables
{y1, y2, · · · , yn} define the phase plane of the problem.
If there are sets of coupled higher order ODES, they can also be reduced
simultaneously. After this reduction one can solve them again by
exponentiation of a matrix.
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Radioactive decay chains

The numerical problem

In many modern research problems involving differential equations, the
number of variables is very large. For example, molecular dynamics
simulations of fluids regularly use as many as 106–108 variables.
Simulations of the evolution of the universe (the N-body gravitational
problem) may deal with 107–109 mass points.
In all these cases there are large hierarchies of time scales. One knows that
typical molecular speeds are equal to the speed of sound, cs . The typical
microscopic time is of the order of a/cs , where a is the average
inter-molecular spacing. The typical mesoscopic size scale is of the order
of N1/3a, and the corresponding time scale is N1/3a/cs . As a result, there
is a clear separation of 102–103 between these time scales. There are
sometimes even slower processes, such as diffusion, which may raise the
ratio of the small and large time scales to as high as 106 or more.
Ill-conditioning is then normal in most problems, and methods to alleviate
these are important.
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Radioactive decay chains

References and further reading

The Wikipedia article on radioactive decay chains contains the
parameters of the naturally occurring chains.

“Differential equations, linear, nonlinear, ordinary, partial”, A. C. King,
J. Billingham and S. R. Otto, Cambridge University Press, 2003.

“Ordinary differential equations”, V. I. Arnold, The MIT Press, 1973.

“Nineteen dubious ways to compute the exponential of a matrix,
Twenty five years later”, C. Moler and C. van Loan, SIAM Review , 45
(2003) 3–49.
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Quantum perturbation theory

Coupled channel computations

The quantum evolution equation for a general system is

i~
dψ

dt
= Hψ,

where ψ is the wavefunction of the system and H its Hamiltonian. It can
seldom be solved exactly. However, in many applications, one finds
H = H0 + HI where H0 is a solvable Hamiltonian and the remainder, HI , is
small in some sense.
Assume that φn(x) are eigenfunctions of H0 with eigenvalue En. One can
always write any ψ as a superposition of the φn in the form

ψ(x , t) =
∑

n

an(t)e
−iEnt/~φn(x).

Now taking the matrix elements of the first equation in the basis of φn,
one has

i~
da

dt
= HIa.
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Quantum perturbation theory

The real problem

Once the matrix-elements of HI ,

(HI )mn =

∫

dxφ∗m(x)HI (x)φn(x),

are determined, this is a simple set of coupled first order ODEs. One
problem here is that the matrix is infinitely large. The other is that in
many cases of interest (for example, atom-light interactions), HI is
time-dependent.
The solution to the second problem is actually pretty straightforward. The
first problem is usually solved brutally in quantum perturbation theory.
One just truncates the state-space and hopes that nothing goes wrong.
The usual treatment of Rabi oscillations is one example. When one is
close to a resonance then this hope actually is borne out. In many other
cases it is not. This problem has not been solved satisfactorily till now. (I
think I have a general solution based on the renormalization group, but
this margin is not large enough to write it down.)
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Quantum perturbation theory

Rabi oscillations

An infinite laser light train is incident on a system with electrons (of
charge e), and the laser frequency is tuned to a resonance, e.g.,
ω12 = (E1 − E0)/~. Then HI = exF cosω12t. The matrix elements of x

vanish between states of equal parity. In particular the diagonal elements
vanish. Hence the truncated perturbation equations are

i~
d

dt

(

a0

a1

)

=

(

0 V12

V ∗
12

0

)(

a0

a1

)

.

These equations are easily solved.
However, usually a further approximation is made. When observations are
made over a time long compared to 1/ω, then the phase factors in V12 are
averaged over to give a time independent perturbation, V 12. If the initial
conditions are a0(0) = 1 and a1(0) = 0, then the solutions are

a0(t) = cos Ωt, a1(t) = sinΩt, where Ω =
V 12

~
.

These are the famous Rabi oscillations.
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Quantum perturbation theory

Specific problems

1 Examine the neighbourhood of the Rabi resonance region numerically
ω12/2 ≤ ω ≤ 2ω12, keeping successively larger numbers of states (2,
4, 8, 16, etc.) and check how many are needed for 1% accuracy in
the results. Assume that the electrons are in a quantum dot which
can be modelled by a one-dimensional infinitely deep square well.
Evaluate the matrix elements of HI within the program, using
symmetries to reduce the computation as far as possible.

2 Laser pulse shaping is modelled by setting HI = exf (t) cosωt where
f (t) is a positive function called the pulse shape. Is it possible to
shape the pulse in the neighbourhood of a resonance so that there is
multi-state resonance?

3 Apply the coupled channel analysis to the Helium spectrum. H0 is
just the usual central Coulomb potential of the nucleus in which the
two electrons move. Take HI to be the Coulomb interaction between
the electrons. Find how the accuracy of the ground state energy of
the Helium atom changes as you include more and more channels.
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Quantum perturbation theory

The underlying numerical algorithms

The Helium problem is the prototype of modern ab-initio atomic physics
problems. A typical open problem is to compute the spectrum of iron.
Apart from the intrinsic interest, it has applications in both chemistry and
astrophysics. These computations are currently carried out with 106–108

basis states. The number of states used is limited only by algorithmic and
CPU speeds. There is no convincing evidence that in the near future we
will be able to include sufficient number of states to reduce errors to less
than one part in 103.
The first stage of all three problems above is to compute the large
numbers of integrals needed to find the Hamiltonian. Highly efficient
methods of computing integrals exist, and we shall study them.
The next stage is to actually solve a set of linear first order differential
equations. We have met this problem before, and we know that this could
be the bottle-neck in the computation. The related problem that we need
to solve for the spectrum is to find the eigenvalues and eigenvectors of the
matrix. This is also a numerically challenging problem of wide applicability.
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Cruise-lanes in space

The restricted gravitational three-body problem

Classical gravity is the archetype of non-linear problems and shows all the
usual physics associated with it, namely, integrability and chaos. The
circular restricted gravitational three-body problem (CR3BP) consists
of two bodies (which we call the earth and the moon) in circular orbits
around each other and a third body (called a satellite) in orbit around
them which is so light that the earth and moon do not react to its motion.
The heavy masses are M1 = M(1− µ) and M2 = µM where µ ≤ 1/2. The
origin is chosen at the center of mass. Then r1 = −(1 − µ)r and r2 = µr ,
where r = r2 − r1 is the relative coordinate. The period of a circular orbit
is then ω2 = GM/r2. The problem is simplified by choosing units in which
sum of the masses M = 1, the separation between the two masses |r| = 1
and G = 1. Then ω = 1.
Choose the non-inertial coordinates in which the
two heavy masses are at rest. The line joining
them is the x-axis. The plane of their orbit is the
xy plane. x x21

O

x 21 y x

x

c©: Sourendu Gupta (TIFR) Lecture 2: Five problems CP 1 16 / 32



Cruise-lanes in space

The Jacobi integral

The distance of the satellite from the other two bodies, and its speed are
given by the expressions

r2
i = (x − xi )

2 + y2 + z2, and v2 =

(

dx

dt

)2

+

(

dy

dt

)2

+

(

dz

dt

)2

.

Since the reaction of the heavy bodies to the light body is not taken into
account, the energy of the system is not conserved. Jacobi constructed an
integral of motion [Moulton], C , which is the sum of the kinetic energy
and an effective potential

C =
1

2
v2 + V (r), where V (r) = −

1

2

(

x2 + y2
)

−
(1 − µ)

r1
−
µ

r2
.

This implies that for any C there is a locus of points, v2 = 0, which
cannot be crossed by any orbit of the satellite. Analysis of this surface
gives the Lagrange points.
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Cruise-lanes in space

The Lagrange points

The Lagrange points are those spatial points where the whole orbit has
v = 0. Therefore these are points with ∇V = 0. One has

∂V

∂z
= z

[

1 − µ

r3
1

+
µ

r3
2

]

= 0.

Therefore, all the Lagrange points lie in the plane z = 0. The other two
derivatives are

∂V

∂x

∣

∣

∣

∣

z=0

= x − (1 − µ)
x − x1

r3
1

− µ
x − x2

r3
2

= 0, (1)

∂V

∂y

∣

∣

∣

∣

z=0

= y

[

1 − (1 − µ)
1

r3
1

− µ
1

r3
2

]

= 0. (2)

When y = 0 there are three values of x where the derivative vanishes.
These are called the L1, L2 and L3 points. These are unstable under small
perturbations. When y 6= 0 the solutions are r1 = 1 and r2 = 1. These are
called the L4 and L5 points. These are stable points.
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Cruise-lanes in space

The problem

1 The Sitnikov problem: Consider the motion of the satellite in the
CR3BP in which the initial conditions are that the satellite starts from
rest from some point x = y = 0 and z = z0. This motion is
one-dimensional and integrable [Sitnikov]. Solve this case analytically.
What is the effect of small perturbations orthogonal to the z-axis
[Hevia et al]?

2 Consider rockets fired from the earth at an angle φ from the x axis in
the xy plane with Jacobi integral equal to C . For each pair of initial
conditions {φ,C} follow the trajectory

d2r

dt2
= −∇V .

Find the set of trajectories which reach a distance D from the center
of mass after a time T .

3 Which set of initial conditions {φ,C} lead to chaotic trajectories?
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Cruise-lanes in space

Difficulties

In both the examples above, the system exhibits chaos. A chaotic system
has extreme sensitivity to initial conditions. As a result, small errors in the
integration can result in extremely large errors in the trajectories. Control
of the numerical solution of the equations is therefore of very high
importance.
Note also that the phase space of the systems here have the usual Poisson
bracket structure. As a result, Liouville’s theorem holds and phase space
volume has to be preserved. The methods that are developed for
integrating these equations must also be tuned to preserve phase space
volume to high accuracy. These are called symplectic integrators or
leapfrog methods.
The second problem is an example of an embarrassingly parallel
program. Each initial condition can be evolved completely independently
of any other part of the computation. In principle, they can even be run
on completely different machines.
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Cruise-lanes in space

References and further reading
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Meta-materials

Electrodynamics

The Maxwell’s equations in vacuum:

∇ · D = 0, ∇ · B = 0, ∇× H =
∂D

∂t
, ∇× E = −

∂B

∂t
,

and the constitutive equations, D = ǫE and B = µH, together are a set of
first order linear partial differential equations in six variables. Standard
textbook problems involve the study of antennae, waveguides and optical
fibers. In all these problems it is useful to Fourier transform and solve
algebraic equations in Fourier space.
Typical modern problems are those in which ǫ and µ are engineered to be
non-constant. Such is the case for investigation of radar signals incident
on stealth aircraft, or the properties of metamaterials which have a
negative refractive index [Smith et al]. In this case, Fourier space solutions
are less transparent than the numerical solution of the Maxwell equations.

c©: Sourendu Gupta (TIFR) Lecture 2: Five problems CP 1 23 / 32



Meta-materials

Solving Maxwell’s equations

In performing numerical solutions, it is useful to discretize the space and
time derivatives and work on a space-time lattice. If the Gauss law
(divergence free) conditions are imposed on D and B at the initial time,
then it is possible to define numerical time evolution in such a way that
they remain divergence free at all subsequent times. Then the Maxwell’s
equations become a set of autonomous first order partial differential
equations

γ
∂F

∂t
+ ∇× F = 0, where γ =

(

ǫ 0
0 µ

)

, F =

(

E
B

)

.

Numerical solution of these equations can have artificial dispersion, if
different Fourier modes travel with different phase velocities, dissipation,
if the evolution equation does not preserve the norm of the signals, and
anisotropy, since the discretized equations do not have the full rotational
symmetry of the original. The numerical problem is to control these effects
[Liu].
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Meta-materials

References and further reading

“Metamaterials and negative refractive index”, D. R. Smith, J. B.
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K. S. Yee, IEEE Transactions on Antennae and Propagation, 14
(1966) 302.
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10 (1990) 127.

“Fourier analysis of numerical algorithms for the Maxwell’s equations”,
Y. Liu, Journal of Computational Physics, 124 (1996) 396.
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Transport in strongly-coupled plasmas

Scales in a plasma

A plasma is a fluid with mobile charges which is overall charge neutral.
The basic microscopic scales are the charge of each particle, e, its mass,
m, and the interparticle separation: a = n−/13, where n is the number
density of particles in the plasma. The temperature, T is also a
microscopic parameter since it is equal to the average energy of each
charge carrier. We have used units natural for the classical plasma, i.e.,
one in which kB = 1 so that T has units of energy, and 4πǫ0 = 1 so that
e2 has units of energy times length.
A dimensionless quantity built from the microscopic scales, called the
plasma parameter, is related to the ratio of the thermal energy and the
Coulomb energy at the mean separation,

K =

√

Ta

e2
.

When K ≫ 1 the plasma is said to be weakly coupled, and when K ≃ 1 it
is strongly coupled [Gupta].
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Transport in strongly-coupled plasmas

Length scales in a plasma

The average distance of closest approach between two charges, d , occurs
when the Coulomb energy equals the thermal energy,

d =
e2

T
= a

(

e2

aT

)

≃
a

K 2
.

There is another length called the Debye screening length which is equal
to

λ ≃ Ka =

√

a3T

e2
.

If a test charge is placed within a plasma, then λ is the distance within
which the charge is screened off by an oppositely charged sheath. As a
result, particles passing by the test charge at a distance larger than λ do
not feel its Coulomb field. For a weakly coupled plasma λ≫ a ≫ d .
We will next examine the mean-free path length, ℓ, in terms of a and K

[Arnold et al].
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Transport in strongly-coupled plasmas

The mean-free path length in a plasma

If the mean free path is dominated by close collisions, giving rise to large
angle Rutherford scattering, then the cross section σl = πd2. Therefore

ℓl =
1

nσl

≃ aK 4.

If distant collisions are important, then the velocity change in a single
collision with impact parameter b is (∆v)/v = e2/(bT ). Over many
collisions, the velocity changes slowly through a random walk in phase
space. Therefore for small angle collisions

σs =

∫ λ

d

(

∆v

v

)2

2πbdb ≃ a2 log K

K 4
, ℓs ≃ a

K 4

log K
.

For a weakly coupled plasma, log K ≫ 1, so transport properties depend
on ℓs . For a strongly coupled plasma large angle scattering dominates.
Similar analysis shows that the mean free path increases as the 4th power
of the speed of a charge carrier, so that slow particles are the most
important for transport [Aarts].
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Transport in strongly-coupled plasmas

A molecular dynamics simulation of a plasma

Take N particles, and assign them equal masses but charges ±e at
random, making sure that the total charge is exactly zero. Place the
particles randomly inside a box with rigid walls. For a fixed N the box size,
L, determines the average interparticle spacing: a = L/N1/3. Give the
particles random velocities drawn from a Maxwellian distribution at
temperature T . Tune the parameters so K = 10–100.
The simulation [Beck et al] consists of letting the particles evolve under
their mutual Coulomb interactions—

dxk

dt
= vk ,

dvk

dt
=

(ek

m

)

∑

j 6=k

ej

|xj − xk |2
.

Since the paths are not straight lines, computation of the mean free path
requires care [Dehnen]. Define it by computing the autocorrelation of the
direction of the velocity of a particle. Simultaneously count the number of
close approaches [Quinn et al]. Check whether or not the mean-free path
is dominated by close encounters.
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Transport in strongly-coupled plasmas

The difficult bits

A molecular dynamics (MD) problem of this kind involves many subtle
subproblems. In a classical problem of this kind it is important to satisfy
Liouville’s theorem; so one has to use symplectic integrators. Next, at
each time step, one has to find the force on every particle due to every
other, which takes O(N2) time. This has to be done carefully in order to
save as much time as possible [Dehnen].
Clearly this problem is ill-conditioned [Quinn et al], since the time-step
needs to be small when two particles come very close to each other.
Otherwise one can have large errors in the trajectory. However, particles
which are far from others at the same time can be integrated with a larger
time step.
Another problem in MD simulations is to ensure reversibility. Typically,
over long times, accumulated errors in the integration of the trajectory will
mean that the path cannot be traversed backwards. One has to control
errors of this kind.
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Transport in strongly-coupled plasmas
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