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Representing numbers

Bits, bytes and words

In a modern computer memory each unit of memory is a switch (bit)
which is either off (meaning 0) or on (meaning 1). Switches are organized
into groups of 8 called bytes. A single byte can represent the numbers

00000000 = 0,00000001 =1,---,11111111 = 255.

On most machines, groups of 4 bytes are called a word. Most numbers in
a computer are 1 word long. You associate one word in the computer's
memory through a declaration such as:

C example FORTRAN example
int number; integer number
float another; real another

Numbers of type complex, double or long int are two words long.

Problem 1: Write your age in octal (base 8). Write out the current
year in octal. Write a Mathematica code to convert a number from
decimal notation to octal and vice versa.
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Representing numbers

Integers and machine infinity

Subsets of integers are implemented on computers. The size of M depends
on the length of a word. Machine integers are the set

Iz{x“xlgl\/l}.

Addition of machine integers is clearly not closed: for example, 1 + M
cannot be accommodated in a machine. Typically, any integer |x| > M is
called machine infinity. We will denote this by the symbol co.

One could extend the definition of machine integers to

Ty =7 U{o0}.

This has other problems.

Problem 2: On a certain machine M = 2147483647. How many
bytes constitute a word on this machine?
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Representing numbers

Groups
If aset Sis
@ closed under a
binary operation ®, Integers Machine integers
@ has an unique The set of integers, Z, is The set of machine
identity 1 € S such closed under addition; 0 integers, Z, is not closed
that x® 1 = x, is the identity; for any  under addition. Z, is
@ each element has integer z, —z is the closed; 0 is the identity;
an unique inverse, inverse; the order of but co has no inverse
x®@x =1, addition does not element. Hence {Z,+}
o and the operation is Matter. Hence {Z,+} is and {Z,+} are not
associative, a group. groups.
x®(y®z)=
(x®y)® z for all
X7y7 Z 6 5’

then {S,®} is a group.
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Representing numbers
Floating point numbers and machine precision

In decimal notation every real number can be represented in the form
:tO.d1d2d3d4d5 e X 10",

where each digit d; € {0,1,2,3,4,5,6,7,8,9} (except d; which cannot take the
value 0), the number of digits can be anything, and the exponent n is an integer.
Only a subset of such numbers can be represented in one word.

Floating point numbers are signed numbers of the form

+0.dydy - - dp x 10",

where p is the maximum number of digits allowed and n is an integer in the range
|[n| < N. The numbers p and N can be dependent on the word length and other
features of the representation. The machine precision, €,,, is the largest number
for which 1 + ¢, = 1.

Problem 3: Take a make-believe machine which has p = 2 and
N = 2. Which real numbers can be represented in it? What is the
machine precision on such a number.
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Representing numbers

How computer arithmetic is done

A floating point number is stored in normalized form, i.e., the first digit
after the decimal point is not zero. When adding two numbers, the smaller
is de-normalized by shifting the digits until the exponents match. In this
process one can lose some digits altogether. Here is an example on a
make-believe machine with p = 2,

0.48E4+1 +0.16E—2 = 0.48E+1+0.01E-1
= 0.48E+1+ 0.00E40
= 0.48E+1+ 0.00E+1
= 048E+1

This procedure gives rise to the notion of machine precision. On a
machine with p = 2 what is €,,?

Problem 4: See the C/FORTRAN codes associated with this lecture
set. What do they do?
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Representing numbers

Loss of associativity

Addition of real numbers is associative, i.e., the order of addition does not
matter. For example,

(0.98 + 0.006) + 0.004 = 0.98 + (0.006 + 0.004) = 0.99.

For floating point numbers the order matters. For example, with p =2
and N = 2 one has

(0.98E+0 + 0.60E—2) + 0.40E—2 = 0.98E+0 + 0.40E—2 = 0.98E+0
0.98E4+0 + (0.60E—2 + 0.40E—2) = 0.98E+0+ 0.10E—1 = 0.99E40.

Multiplication of real numbers is also associative. However, multiplication
of floating point numbers is not associative. Here is an example,

(0.99E40 x 0.50E+0) x 0.20E+1 = 0.49E+40 x 0.20E+1 = 0.98E40,
0.99E4+0 x (0.50E+0 x 0.20E4+1) = 0.99E+0 x 0.10E+1 = 0.99E+0.
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Representing numbers

Catastrophic loss of precision

Problem 5: We have shown that 0.50E-+0 x 0.20E+1 is not uniquely
equal to 1. Construct an example showing that a+ b = 0 does not
have an unique solution for b given a.

The lack of an unique inverse operation for addition and multiplication
sometimes causes you to lose all precision in the middle of a computation.

For example, if you want to do the computation 171 x (1/17) — 10 with
p = 2 you will have

0.17E+3 x (0.10E+1/0.17E+2) — 0.10E+2
= 0.17E43 x 0.59E—1 — 0.10E+2
= 0.10E+2 — 0.10E42 = 0. (1)

If you are aware of the possibility of such loss of precision you may want to
examine the expression and find that 171 x (1/17) — 10 = 1/17. Then the
maximally accurate computation would be 0.10E+0/0.17E+2 = 0.59E—1.
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Representing numbers

Intervals

Problem 6: An interval on real numbers is the set
(a, b) = {x|a < x < b}.

A floating point number is not a real number; but we can try to
associate it with some interval on real numbers.

Arithmetic has a natural definition on intervals;

(a,b) + (c,d) (a+c,b+d)
(a,b) x (c,d) = (ac, bd).

Is it possible to interpret floating point numbers as intervals? If so,
how does one resolve the problems of non-associativity and the
non-existence of inverses of addition and multiplication? Is this
representation useful in understanding how uncertainties in arithmetic
propagate through a computation?
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The unreality of real numbers
The nature of physical measurements

Any single instance of a physical measurement usually yields a reading on
an instrument. There is a finite resolution for every measurement.
Conventionally one does not quote more digits than are measured. For
example, Avogadro's number is

Na = 6.022 141 79 (30) x 10%3.

The number in brackets is an estimate of the error in the two least
significant digits. One does not write

Ny = 6.022 141 793 152 (300 000) x 1023,

although it lies in the interval specified in the previous instance, because
the extra digits lie beyond the resolution of the measurement.
In this sense, all physical measurements are floating point numbers. When
you manipulate results of measurements, you should be worried about
subtraction and division, the propagation of errors, and catastrophic loss of
significance.

(©: Sourendu Gupta (TIFR) Lecture 3: Numbers for crunching CP1 13/21



The unreality of real numbers

The nature of physical theories

Every physical theory is a map from observation to prediction. For
example, classical mechanics predicts the future behaviour of a system of
particles given observations of its present state. Typically, given
measurements of the position, xg, and momentum, pg, at a time tg, one
obtains predictions for the position, x(t; Xg, po, to), and momentum,

p(t; X0, Po, tp), at any time t. If there are uncertainties in the measurement
of the initial state, there will also be uncertainties in the final state.

Problem 7: Draw phase space trajectories for a one-dimensional

harmonic oscillator. If there are errors in the measurements of initial

position and momenta, dxg and dpg, show how they affect the

uncertainties in predictions. How is this different for the anharmonic

oscillator with V(x) = x*?
Using real numbers to model physical theories can give a wrong impression
of great precision. The main problem of rigorous computation, that of the
propagation of errors, is at the heart of predictability and testability in the
sciences. This is not emphasized by standard mathematical analysis.
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Summing series
Convergent and absolutely convergent

Usually one thinks of a sum of a series as the operations—
ZT_ ((Tr+ T2)+ T3) + Ta) + Ts) + -

When the brackets can be changed around without changing the result,
the series is said to be unconditionally convergent. The exceptions are
those series which are not absolutely convergent.

The Riemann rearrangement theorem states that by a rearrangement a
series which is not absolutely convergent may be made to yield any result
at all.

Problem 8: Prove that

1 1 1 1
177 _ — — — ...:|2
>3 3T ne
11 1

1
1--_=
2 4 3 6 8
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Summing series
Summing in floating point

When the series is convergent as well as absolutely convergent, does
floating point arithmetic change the results? Take two series—

SziTn and 5’:§:T,’,,
n=1 n=1

where T] = T,(1 + €,). We choose €, to be of the order of the machine
precision, €. Then

S-S = 3 Tal < 3 T,
‘ - |—Z€nn_€Z’ nl-
n=1 n=0

Since the series is absolutely convergent, the error is bounded.
Numerical results for series which are absolutely convergent can be
bounded in error by this means. However, this result also shows that
floating point summation of series which are not absolutely convergent can
go terribly wrong when done in floating point.
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Summing series
Bad behaviour of convergent series

The Taylor series expansion of the sine function is

. B > (_1)i—1x2i—1
Sin X = Z W

n=

This series is absolutely convergent for all values of x. When x is small
enough then just a few terms of the series give a good approximation to
the result. For example, when x = 0.01, the error in neglecting all but the
first term is less than 1%. When x is large, the terms increase significantly
before they begin to decrease. Many terms have to be summed, some very
large, before it converges to a value in the range +1. In the process there
may be catastrophic loss of significance (see the Mathematica program).
Problem 9: Given a (large) value of x, for which value of n does the
term reach its maximum? (Hint: If x is large enough, then the n would
be large enough to use the Stirling approximation.) How large is the
maximum value? Does this give us limits on using the Taylor series
expansion for evaluating a sine?
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Summing series

How to sum a power series

Given a power series
N
S(x) = E ajx’',
i=0

what is the most stable method of summing it? The following are
equivalent over real numbers—

S(x) = (a0 + ((a1x) + ((22(x*)) +---))) (2)
S5(x) (a0 +x(a1 +x(az +--+))) (3)
5(x) = (((anx+an-1)x +an—2) +---). (4)

The number of arithmetic operations that you need to perform in
evaluating the expression in (1) is O(N3), whereas for the other two forms
it is O(N). Is the accuracy of these different forms also different?
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References and further reading

© Numerical Recipes, by W. H. Press, S. A. Teukolsky, W. T.
Vetterling, B. P. Flannery, Cambridge University Press. Treat this as
a well written manual for a ready source of building blocks. Read the
introductory chapter for a description of arithmetic on a computer.

© The IEEE 754-2008 floating point standard. This is the most widely
used standard for floating point arithmetic. You should read this
article in Wikipedia carefully enough to understand what problems it
addresses.

© Read, compile and run the C or FORTRAN code associated with this
lecture. What does it do?

© Several points in this lecture are illustrated in the associated
Mathematica notebooks. These notebooks also have additional
examples. They are given in tar.gz format. Unpack them using the
tar -xvzf command.
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