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Linear problems Motivation

What is a linear problem?

The typical linear problem is solving a set of linear algebraic equations—

ail ar - aIn X0 bo
a axp - an X1 by

= , i.e., Ax=Db
ant an2 -+ ann XN by

But such problems can arise in a surprising variety of contexts. In the last
lecture we saw that function interpolation involves solving linear equations.
How do we recognize a linear problem? The simplest definition involves
scaling the unknown quantities in the problem. In the above problem the
unknown is the vector x. If you scale this by some amount, x’ = \x, then
this new x is the solution of the equations for a new b’ = A\b. Such
scalings define linear problems.
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Linear problems Motivation

Scaling a vector generates a line

For every vector b on the right there is a
vector x which is the solution of the equa-
tions. Scaling a vector generates another
parallel vector, and hence defines a line.
A linear problem gives straight lines in the
space of solutions when the input comes
from straight lines in the space of data.

Problem 1: s this linear problem
well-conditioned on b? That is, if
b is changed continuously by a small
amount, then does x also change con-
tinuously by a small amount? Is it
well-conditioned on the matrix?
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Linear problems Norms

Vector and matrix norms

A vector norm ||x|| must have the following properties, ||Ax|| = A||x||,
|[x|| = 0 if and only if x =0, and |[x +y|| < ||x||+ ||y||. The p-norm of an
N-dimensional vector is

N 1/p
[Ix[[p = [Z |Xip] :

i=1

The 2-norm is the usual Euclidean norm. Sometimes one needs the
oo-norm, which is just the element of the vector with the largest absolute
value. The 1-norm is sometimes called the Manhattan norm.

Every vector norm induces a matrix norm. The induced norm of a matrix,
A, is

sup || Ax]|p

il [IxX]]p

1Al

An obvious consequence is ||Ax|| < ||A]| ||x]]-
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Linear problems Norms

The triangle inequality

Problem 2: Examine the triangle inequality for the p-norm of vectors
in one dimension. Is it satisfied? Is there any stronger condition which
is satisfied? Are all real values of p allowed as a p-norm?

Problem 3: Examine the triangle inequality for the p-norm of vectors
in two dimensions. s it satisfied when the norm of the two vectors are
equal? What happens when the norm of one vector changes? Can you
establish a proof for the triangle inequality in this case? Are all real
values of p allowed as a p-norm?

Problem 4: Why is it sufficient to prove the triangle inequality in two
dimensions in order to establish it in any dimension?
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Linear problems Norms

The 2-norm of a matrix
For any matrix A, the 2-norm is

sup [xTATAx

Al =
142 xlixllzo Vo xTx

)
where At denotes Hermitean conjugation— (AT),-J- = Ajf,- and x'x is just the
dot product of the vector with itself. Note also that B = ATA is a
Hermitean matrix, i.e., B = B. Therefore, the eigenvalues of B are real.
Call them ;. If the orthonormalized eigenvectors of B are v;, then any
vector x = ) . x;v;. As a result,

sup

2
A2 = = max;./0;j.

% |1x||p#0

The eigenvalues of AfA are called the singular values of A. If A'is
Hermitean, then the singular values are the squares of the eigenvalues_of A,
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Linear problems Norms
The oo-norm of a matrix

The oco-norm of a matrix A is

1
sup  Lim (X147 )"

Alloo = i P
14]leo xlxlloo#0 pmoo \ D |Xj[P

The numerator is the term in the sum |Ajx;| which is the largest and the
denominator is the component of x which is the largest in magnitude. If
the maximum in the numerator does not come from that ij for which |Aj|
is the largest, then by just increasing the corresponding |x; one can increase
the ratio. Therefore, as one varies the components of x, the largest term
in the numerator will be the one which picks out the largest component of
A. By varying over such x it is clear that one will eventually have

||A]|oo = max;;|Aj|.

Is ||Al|co invariant under unitary transformations? What is an efficient
method for finding ||A™Y|[00?
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Linear problems Computing dot products: introduction to parallel computing

Dot products of vectors

The dot product of two N-dimensional complex vectors x and y is

N
xly =" xy'.
i=1

This requires N complex conjugations, complex additions and complex
multiplications. Each complex conjugation requires one sign flip, a complex
addition is two real additions, a complex multiplication is four real multiplications
and two real additions. Hence the operation count is 9N. For the dot product of
two real vectors the operation count is 2. We say that the complexity of the dot
product is O(N).

The sum is performed by sending one element of each vector from memory to the
arithmetic-logic unit (ALU) in the CPU, and performing the sum into an
accumulator in the ALU. This pipeline from memory to ALU is the slowest part of
the computation. A typical CPU on a desktop today has 3 GHz clock, but the
memory transfer is less than 1 MHz-bit. So one 4-byte real number takes more
than 12 CPU cycles to transfer, but only 2 cycles to process.
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Linear problems Computing dot products: introduction to parallel computing

Parallel dot products

Let's think of parallelizing the operation. Assume we have P processors
and we distribute the components of the vector equally over them, then
the dot product becomes

P—1 | (+1)x(N/P)

xXy=>"| > xv

j=0 |i=jx(N/P)+1

The j-th processor does the partial sum given within brackets. The outer
sum needs 2P operations no matter how we break it up, so the total is
9(N/P) + 2P operations. By this count the optimum number of
processors is P = /9N /2. A similar counting for real vectors shows that
the optimum number of processors for that case is P = /2N. The parallel
complexity of a dot product is O(v/N).

Consider again the transfer speeds. The bandwidth of the network between
processors can be factors of 10-1000 slower than that from memory to

ALU. Hence the parallel operation is dominated by communication speed,
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Linear problems Computing dot products: introduction to parallel computing

Parallel speedup and scaling

Parallel speedup, SP, is the ratio of time spent on a problem by a serial
computer and a parallel one. In this counting we found that the parallel
speedup was SP = 9N/[9N/P + (2 + b)P], where b is the number of
clock cycles needed to transfer one word. It is of practical importance to
understand how SP scales.

When N is fixed and P changes, the scaling of work with changing P is
called strong scaling. In this case, we find that for P < N one has linear
speedup, i.e., SP o« O(P). However, when P ~ /9N /(2 + b) the speed
up is sublinear, at best SP & O(v/P). For much larger P there is no
speedup, since SP o< O(1/P). It is cost-efficient to work in the regime of
linear speedup.

Weak scaling is when the problem size, N, is changed as P changes in
order to solve large problems efficiently. For the dot product, if N oc P¢,
with a > 1, then one has linear speedup.
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Solving linear equations

When should one even bother?

If the equations Ax = b are such that small changes in b lead to enormous
changes in x, then it may not be worthwhile trying to solve the equations.
If b is a change in b and dx is the induced change in x, then

[Ibl| < llA[l[[xIl  and [[éx]| < [|A7*]]|ob]].

Therefore one can bound the fractional change in x—

1OXI] 11 A=1111 a1 LoB!]
< AT AN
IxIl |Ibl]

The condition number of a matrix A is

k(A) = [|All[|A1].

If the condition number of a matrix is large, then small changes in the
right hand side of the equations cause large changes in the solutions. If the
condition number is comparable to the inverse of the machine precision
then any solution of the system of equations is essentially meaningless.
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Solving linear equations Gauss Elimination

Gauss elimination

Given a system of N linear equations in N variables, Ax = b, a systematic
solution exists. Add an appropriate multiple of the first equation to each of the
others to eliminate the first variable from the remainder. Then add a multiple of
the second to the equations below to eliminate the second variable, etc.. At the
N-th step, we have the upper triangular form

_ o N\ /x _
0 - — | [ = -
0 0 - - -
00 0 — —|l=l=]-]
000 - 0 —/ \xy -

where the — are non-zero numbers. This triangular system can be solved by back
substitution from the last equation up. Programming this is straightforward.

Problem 5: Give an example of a system with non-singular A for
which Gauss elimination fails.
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Solving linear equations Gauss Elimination

A problem with Gauss elimination

A problem with the simple Gauss elimination process is illustrated by this

e (D60

where € is a number close to the machine precision. Note that the problem is
perfectly solvable: the determinant is —1 + € and the condition number is not far
from unity. The exact answer is

‘31__";:3+<9(e), R O

1—ce¢
The elimination gives
e 1| a (€ 1 a _fe 1
1 1)b 0 1-%p-2)7 (0 -1

where the last step is the most likely result after rounding. Back substitution will

y:

then give y = a and x = 0/¢! During back-substitution the small relative error in
elimination is magnified: this is catastrophic loss of precision,
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Solving linear equations Gauss Elimination

The solution: pivoting

A small change will solve this problem. Start by interchanging the order of

the equations.
1 1\ /x\ (b
e 1) \y) \a)’

This is already approximately in the form required. If € were small enough,
the 21 element would be rounded to zero, and you could do the
back-substitution straight away. Elimination gives

llbg)e 1 b
€ 1| a 0 1—€la—e€b)"

No problems arise at any point. The crucial point is that during Gauss
elimination whenever you might have to divide by a small number, just
interchange that row with one of the rows below which doesn't have a
small number in that column. This is called pivoting.
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Solving linear equations Gauss Elimination

Another problem with Gauss elimination

Consider the equations

1 10 101 X a
2 1 3 y|l=1|b
1 1 1 z c
The first step of Gauss elimination gives
1 10 10 a
0 1-2x10"* 3-2x10" b—2a
0 1-10% 1-10"* | c—a

Since the three row vectors are nearly parallel, further steps will result in
catastrophic loss of accuracy. The solution is to equilibrate the matrix, i.e.,
multiplying each equation by an overall number such as to reduce the largest
element to something of order unity. After pivoting, this gives

1 1 1] ¢ 1 1 1 c
z 1 1jaz and 0 1-z 1-z|(a—0¢)z],
2 1 3] b 0 -1 1 b—2c

where z = 1071*. Clearly, the rest has no any numerical instability.
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Solving linear equations Gauss Elimination

Complexity of Gauss elimination

Consider Gauss elimination for a system of N equations in N variables.
Eliminating at the i-th row requires N — i + 2 multiplications and the same
number of subtractions. Back substituting in the i-th row requires N — i
multiplications, N — i + 1 subtractions, and one division. The total count of
operations is

N N

DAN—i+2)+ N—i+N—i+1+1=> (4N —4i+6)=O(N>).

i=1 i=1
A straightforward application of Kramer’s rule would have resulted in an
operation count of O(N3).

If one moves the numbers required for pivoting from one location to another, then
that could require potentially O(N?) operations. Instead of this overhead, one
therefore keeps an array of pointers: row(i). Initially, row(i) —i. Every time

you need to interchange rows a and (3 just set row(a)— 3 and row(3)— «a.

Problem 6: s the description of the pointers above correct? If one of
the rows involved has been interchanged already, what should you do?
What is the correct way to incorporate pointers for pivoting in Gauss

elimination.
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Solving linear equations LU decomposition

The theory of Gauss elimination

Write the coefficient matrix, A, in the form of a product, A = LU, where L
is lower triangular (all elements above the diagonal are zero) and U is
upper triangular (all elements below the diagonal are zero). Then the
elimination process converts the equation LUx = b to Ux = L™1b. It is
possible for the condition number of A to be okay, but that of U to be
very large. In that case, the inversion of U can be problematic.

For example,

Ga)=G6 ) G665

For the first form of A, the two row vectors of U are nearly parallel! As a
result, K(U) = O(e=2)! Since k(L) = 1, the elimination process is
non-problematic; only the back substitution step (i.e., obtaining U‘l) is
numerically unstable. In the second case both x(L) and x(U) are near
unity. When k(A) is acceptable, the controlling factor for accuracy of
Gauss elimination is x(U). Pivoting helps to control this.
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Solving linear equations LU decomposition

Uniqueness of the LU decomposition

Given a matrix A, we construct a factorization in terms of a product of a
lower triangular (L) and an upper triangular (U) matrix, A = LU, such
that the diagonal element of L are all unity. Such a factorization is unique.
Suppose there is another factorization A = L'U’. As long as A is
non-singular, so are L, U, L’ and U’, since det A = det L x det U. Hence
the inverses of the upper and lower triangular matrices exist. Since

LU = L'U’, one has L~11’ = UU'"L. Now the left hand side is lower
triangular whereas the right hand side is upper triangular. Hence one must
have both sides equal to the identity. Therefore L’ = L and U’ = U.

© Note that det L = 1, so det U = det A. Gauss elimination allows us to
find the determinant of a matrix in O(N?) operations.

©Q If one allows the diagonal elements of L to be arbitrary then the
factorization is not unique.

© An explicit construction of L is useful if there are several right hand
sides, by, by, etc..
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Solving linear equations LU decomposition

The LU decomposition

In the decomposition A = LU, consider the r-th row of A. Elements of
this row are obtained by the dot products of the r-th row of L with
successive columns of U—

ari = luni + louoj + -+ -+ lp r—1up—1; + uy.

In these N equations, the unknowns are r — 1 of the /,; (for i < r) and

N + 1 — r of the uj;. The remaining uj; are known from the previous rows.
The first row gives uy; = a1;. Starting from this the LU decomposition
may be constructed systematically: /1 = a,1/u11, 2 = (ar2 — lu12)/u22,
etc.. This fails only when one of the u;; vanishes. If A is non-singular, then
this can be avoided by pivoting.

Since the diagonal elements of L are all unity, they need not be stored.
Therefore, L and U can be fitted into the same storage as A.

The error analysis for this construction is exactly the same as that for
Gauss elimination.
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Solving linear equations Odds and ends

Tridiagonal and band-diagonal matrices

Matrices with the only non-zero elements restricted to the diagonal and a
few rows above and below it are called band-diagonal. If the only non-zero
elements are in the diagonal and exactly one row above and below it, then
the matrix is called tridiagonal. Gauss elimination with pivoting can
increase the band width of these matrices.

However, if the matrices are diagonal dominated, i.e., |a;i| > |aj for all

Jj # i, then there are simpler methods to solve the equations.

Problem 7: Find an iterative algorithm to solve tridiagonal systems
of equations.
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Solving linear equations Odds and ends

Iterative improvement of solutions

On a computer with machine precision ¢, = 1077, if one solves a set of
equations with condition number x(A) = O(10) with k < p, then one has
a solution where the last k digits are essentially random. One could try to
recover this precision iteratively.

Define the residual r = b — Ax where x is the solution that has been
obtained. Since x has only p — k significant digits, r has k significant
non-zero digits. Now solve for y in Ay =r. If an LU decomposition had
been performed, then this cost is small. By the same logic as before, the
last k digits of y could be undetermined. However, since r was 10~ times
smaller than b, the new residual error in r — Ay is 1072k times smaller.
Hence x + y has higher precision.

We have assumed that A was equilibrated, so there was no loss of
precision in storing it. The only loss of precision came from inverting it.
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References and further reading

© The Algebraic Eigenvalue Problem, by J. H. Wilkinson, Clarendon
Press, 1965. This is the book on linear algebra: with detailed theory,
very good explanations, and, most of all, beautifully constructed
examples. Very highly recommended as a book you should read
through carefully at some time in your life, preferably during the
course.

© Numerical Recipes, by W. H. Press, S. A. Teukolsky, W. T.
Vetterling, B. P. Flannery, Cambridge University Press. Treat this as

a well written manual for a ready source of building blocks. However,
be ready to go into the blocks to improve their performance.

© E. H. Neville, “lterative interpolation”, Journal of the Indian
Mathematical Society, Vol 20, p. 87 (1934).
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