[
Sourendu Gupta

TIFR Graduate School

Computational Physics 1
February 17, 2010

«4O0)>» «Fr «=» <« 3 Q>

Outline

@ Finite differences
© Interpolating tabulated values
© Difference equations
© Differential equations
e Function approximation
@ Finite differences
@ Splines

@ A first look at Fourier series

@ References

(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1

CP1

2/35

© Finite differences

© Interpolating tabulated values
© Difference equations
© Differential equations

© Function approximation
@ Finite differences
@ Splines
@ A first look at Fourier series

@ References

«O>r «Fr « >

Finite differences

The generic function is pathological

The Bolzano-Weierstrass function is defined for any odd positive integer b
as

f(x):Za"coswb"x, 0<a<l, ab>1+3n/2.
n=0

This was the first known example of a real function which is continuous at
all points, but has no derivative anywhere. Functions of this kind are
generic. The trajectory of Brownian motion is of this form. Path integrals
in any non-trivial field theory are dominated by such paths: they are the
essence of quantum theory.

Problem 1: What can you say about the accuracy of numerical
computations of the BW function and its derivative from the series
definition above? Assume that the machine precision is p. What is the
coarsest grid on which you can tabulate the BW function and still get
close to machine precision evaluation of the function through a
polynomial interpolation?

(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CP1 4 /35

Finite differences

Non-Newtonian machines

The forward, backward and central dif-
ferences are

0.000122070312 0.540527344 0.540039062
6.10351562E-05 0.541015625 0.540039062
f(X + h) _ f(X) 3.05175781E-05 0.541015625 0.5390625
A f _ 1.52587891E-05 0.54296875 0.5390625
h - 9 7.62939453E-06 0.546875 0.5390625
h 3.81469727E-06 0.546875 0.53125
1.90734863E-06 0.5625 0.53125
v f‘ _ f(X) f(X h) 9.53674316E-07 0.5625 0.5
h - h I 4.76837158E-07 0.625 0.5
2.38418579E-07 0.75 0.5
1.19209290E-07 1. 0.5
th — f(X + h) f(X h) 5.96046448E-08 1. 0.
2h ? 2.98023224E-08 2. 0.
1.49011612E-08 4. 0.
7.45058060E-09 8. 0.
3.72529030E-09 16. 0.

all have the same limit (over reals) as h — 0,
and it is the derivative, f'(x). The limit has
no meaning for floating point numbers: as
h becomes smaller and smaller, the differ-
ences in the numerator become smaller and
catastrophic loss of significance sets in.

h, Apsin(1.0) and
Vpsin(1.0) in single
precision arithmetic.

(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CP1 5/35

Finite differences
Instability and inaccuracy
A Taylor series expansion shows that

Apf(x) = f'(x) + hf"(c), where x < ¢ < x+ h,

so for large h there is an inaccuracy. For small h one has to also take care
of numerical inaccuracy. If €., is the machine precision, then

Baf(x) = £'(x) + 52 + hf"(c).

Here (and later) a bar under a quantity will denote the result of a
numerical computation. The 1/h term is a numerical instability.

Problem 2: Perform the analysis of errors and instabilities for Vj, and
Dy,. Write FORTRAN, f90 and C codes for computing all three
difference coefficients for sin x and check whether these formulae are
accurate, i.e., whether ¢, can be extracted from the behaviour of the
differences. Can one extract the exact value of f(x) using
computations at different h?

(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CP1 6 /35

@ Finite differences

© Interpolating tabulated values
© Difference equations
© Differential equations

© Function approximation
@ Finite differences
@ Splines
@ A first look at Fourier series

@ References

«O>r «Fr « >

Interpolating tabulated values
An impossible thing before breakfast

Given a set of knot points, {xg, x1,--- ,xy} (assume that the points are
ordered xp < x1 < --- < xp), and a set of function values at these points,
{Y0,y1," -+ ,yn}, how do you find the function value at any point in the
range [xo, xn]?

If you find an answer, f(x), then | can always construct a new function

which coincides with f(x) at every tabulated value and can be made to
differ from f(x) everywhere else by as much as we wish. Therefore, this is
an ill-posed question.

We try to make the answer unique by asking how to construct polynomials
which pass through the tabulated points. We can, of course, also ask that
these polynomials satisfy some other properties, like smoothness, etc. We
could also ask for rational functions, Fourier series, or any other well-posed

question.
(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CP1 8 /35

Interpolating tabulated values
An impossible thing before breakfast

Given a set of knot points, {xg, x1,--- ,xy} (assume that the points are
ordered xp < x1 < --- < xp), and a set of function values at these points,
{Y0,y1," -+ ,yn}, how do you find the function value at any point in the
range [xo, xn]?
If you find an answer, f(x), then | can always construct a new function

N

F() + g(x) [[(x =)
i=0

which coincides with f(x) at every tabulated value and can be made to
differ from f(x) everywhere else by as much as we wish. Therefore, this is
an ill-posed question.
We try to make the answer unique by asking how to construct polynomials
which pass through the tabulated points. We can, of course, also ask that
these polynomials satisfy some other properties, like smoothness, etc. We
could also ask for rational functions, Fourier series, or any other well-posed

question.
(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CP1 8 /35

Interpolating tabulated values

Polynomial fits and van der Monde matrices

Typically, you could find a polynomial of order N which passes through
N 4+ 1 points—

N
P(x) = Z cix', where P(xi))=yi (0<i<N).
i=0

This gives a set of linear equations to solve—

N

1 x -+ X o) Yo
N

1 xx - x a 1
N

1 xyv -+ Xy cN YN

This (N + 1) x (N + 1) matrix is called a van der Monde matrix. It has
very small determinant: typically det M o< exp[—O(NP)] where p > 1. As
a result, inverting it by the usual methods leads to catastrophic loss of
precision. So look for more clever methods.

(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CP1 9 /35

Interpolating tabulated values
Newton polynomials

For a given set of knot points, the Newton polynomials are, Py(x) =1 and

n

Pa(x) = H(x -). Note Py(xo) =0 when a < n.
i=0

The Newton polynomial approximation is the linear combination

N
P(x) = Z anPn(x), where P(xo) = Yo for 0 < a < N.
n=0

Solve this by inverting the matrix

1 0 e 0 =0 Yo

1 xq—x - 0 a n
N-1,.

I xi—x0 - Jl,—g(xn—xn) an—1 YN-1

Problem 3: Plot the Newton polynomials for a randomly chosen set
of grid points. Bring the van der Monde matrix to the above form.
(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CcP1

10 / 35

Interpolating tabulated values

Divided differences

Solutions are the divided differences. Solve recursively starting from
equation for ag:

2
_ Y1) . Yj
a4 =Y, d1=_—__ a&@= T
X1 — X0 =0 Iln=0.21nzj(Xj — Xn)

One usually displays this as the tableau:

1 2 3

o o u o v

x 1 (2

1 Y1 0N Y1

X (1)

2 Y2 Y

X3 Y3

The elements of the tableau can be generated by the recursive formulae
I+1 ! I I+1 ! I (141
D S0 (0)
(0) (0)

starting with x;’ = x; and y; ' = y;.

(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CcP1 11 /35

Interpolating tabulated values

A few problems

Problem 4: Show that when the knot points, x;, approach each
other, the Newton polynomial approximation approaches a truncated
Taylor series. If these computations are performed in floating point
arithmetic, is the limit well-defined? Given a certain machine precision,
is there a limit to how closely the x;s can be spaced before catastrophic
loss of precision renders the divided differences meaningless?

Problem 5: What relation does the Newton polynomial
approximation bear to the Lagrange interpolation formula

PO - 3

n=0 N|n75_1(Xn)
Is there any way to make this approximation behave better than the
divided differences at any fixed value of machine precision?

Problem 6: Are the derivative of the Lagrange interpolation formula
continuous at the knot points?

(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CcP1 12 /35

@ Finite differences

e Interpolating tabulated values
© Difference equations
© Differential equations

© Function approximation
@ Finite differences
@ Splines
@ A first look at Fourier series

@ References

«O>r «Fr « >

Difference equations
Solving a finite difference equation

The equation Apf = af gives
f(t+ h) = (1+ ah)f(t) = (1 + ah)* /1 (0).

In the limit of h — 0, this is indeed the exponential function.
With the approximation A for the derivative, we neglect terms of order h?.
The solution of the differential equation f/(t) = af(t) would give

f(t+ h) = e f(t) ~ [1+ ha + O(h?)] f(t).

So, the solution of the difference equation is correct to the same order.
This will be generalized to Euler’'s method. Improvements can be
obtained by solving the equation

Apf = % (" —1) .

It is common to improve the equation by placing correction terms into the
right hand side. It is also possible to use expressions for the derivative
which are correct to higher order in h.

(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CP1 14 / 35

Difference equations
Instability and inaccuracy

The solution of the differential equation f/(t) = —af(t) goes to zero in
the limit t — oo for all positive values of a: and generic initial conditions.
The equation A,f = —af gives

F(t+ h) = (1 — ah)f(t) = (1 — ah)t/"£(0).

If ah > 2 then |[f(t)| — oo in the limit t — oco. In other words, the
solution is unstable.
In a region around h = 2/, one may have catastrophic loss of
significance. Even if the loss per step is not catastrophic, errors could
build up over many steps. In general, if the error at the n-th step is €,,
one will have |e,| = K"|€e1|, where K is the error in evaluating the
multiplicative factor. This is large also when ah is small.
If 1 — ach were evaluated exactly, then an error made for some reason at
any step of the computation propagates unchanged, i.e., K = 1. Any error
in computing this multiplicative factor increases K. Hence, the error grows
exponentially, irrespective of the sign of a.

(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CP1 15 / 35

Difference equations

Stabilizing the solution

One way to stabilize the solution is to replace the difference equation by
Apf(t) = —af(t+ h). Then

f(t+h)= 1 f(t) = Wf(oy

~ 1+ah
This goes to zero in the limit of large t. Since the solution requires the
evaluation of the derivative at the next step of the solution, a method
such as this is called an implicit method.
Another stable solution is obtained by using the difference equation
Apf(t) = —aff(t) + f(t + h)]/2. This has the solution

o o\
f(t+h) = La:gf(t) - (1+a:> (0).

Not only is this stable, one can also check that this is correct to O(h?).
Evaluating the derivative at the mid-point of the interval is a technique
will be used in the 2nd order Runge-Kutta method.

(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CP1 16 / 35

Difference equations

An oscillator: instabilities

The system of equations

(& o)r 1=()

has the solution fi(t) = sint and f(t) = cost. The corresponding forward
difference equations, Axf(t) = Mf(t) where M is the 2 x 2 matrix above,
have the solutions

f(t+ h) = (_1h ’17) £(1).

This matrix has eigenvalues AL = 1 & ih. Since |Ax| > 1, errors in the
computed solution will always grow.

Replace this by the implicit equation Axf(t) = Mf(t + h). Then the
solution is

f(t+h) = </17 _1”>),

This matrix has eigenvalues |[A1| < 1, so the solutions will always decay.

(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CcP1 17 / 35

Difference equations

The leap-frog method

The oscillator should have a conserved quantity |f|?. In these
methods |f(t + h)|]> = [A+|?|f(t)|? = [f(t)|? + O(h?). If one
improves the conservation law, one may have a better algo-
rithm.

Introduce a staggered lattice as here. Place f; at integer
points nh and f, at half-integers (n + 1/2)h. Place the f; on
the integer lattice and the £, at the half integer points. Then
the solutions of the difference equations are—

h 3h h
fi(t+ h) = fi(t) + hfa(t + 5)7 f(t + ?) = h(t+ 5) — hfi(t + h).

The initial and final half steps are: f,(h/2) = £,(0) — hf1(0)/2 and
fa(nh) = f2(nh — h/2) — hfi(nh)/2. Clearly this is equivalent to

fi(t+h) = ﬂ(t)+hf2(t)—h;f1(t), K (t+h) = fz(t)—g[ﬂ(t)Jrﬁ(tJrh)].

1 2
Y2 32 52 72 92 11U2 132

0

t=

t

Therefore |f(t + h)|? = [f(t)|> + O(h*).

(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CcP1 18 / 35

Difference equations

Using the Euler and leapfrog methods

Problem 7: Write Mathematica functions which will take as input
the vector f(t) and the quantity h and give back (1) the Euler updated
vector, (2) the implicit Euler updated vector, and (3) the leap-frog
updated vector, f(t 4+ h). In each case use the function to evolve the
vector (0,1)7 through time 47 using h = 27/10, 27 /20, 27/50 and
27/100. Plot the phase space trajectories, and write out the initial and
final values of |f|? in each case.

Problem 8: Generalize the leap-frog method to solve the problem of
the anharmonic oscillator, i.e.,

1 1
H=>p>+=q"
2P T
Implement your solution in Mathematica and compare it with the
results obtained using the inbuilt methods for solving differential
equations. Change the precision of the Mathematica routines to see
how this affects the solution.

(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CcP1 19 /35

@ Finite differences

e Interpolating tabulated values
© Difference equations
© Differential equations

© Function approximation
@ Finite differences
@ Splines
@ A first look at Fourier series

@ References

«O>r «Fr « >

Differential equations
Solving differential equations

Euler’'s method of solving a system of first order differential equations,
f'(x) = d(f(x), x), is

f(x + h) = f(x) + hd(f(x), x),

where fij(x) is the i — th function. This is equivalent to solving the
difference equation Axf(x) = d(f(x), x). The solution is correct to order h.
The second-order Runge-Kutta algorithm (RK2) is defined by

F(x+h) = £(x)+hd(F(x+h/2), x+h/2), F(x+h/2) = f(x)+gd(f(x),x),

00 Eder This is correct to O(h?). One can also think of
-/ this as Euler's method on a staggered lattice.
This corrects the right hand side of the equation
by interpolating the derivative linearly between x
e | and x + h. A quadratic interpolation gives rise to
— the fourth order Runge-Kutta algorithm.
(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CP1 21 /35

Differential equations

Complexity of algorithms

Suppose that the dimension of the vectors f and d is M. Suppose also
that the CPU time taken to perform an arithmetic operation is T7, and
that required for the evaluation of each component of d is T,. It may
happen that To > T;.

Then the time taken per step of the Euler method is M(2T7 + T3), and the
time per step in RK2 is exactly twice, i.e., 2M(2T; + T3). If the ODEs are
integrated from x; to x¢ in N steps, i.e., h = (xf — x1)/N, then the time
taken for the Euler method is MN(2T; + T3), giving an error of O(N~2).
RK2 takes exactly twice the time to get an error of O(N~3). A fair
comparison would would be of the time taken to make comparable errors.
To get an error of O(N~3) using Euler's method would require time of
order MN3/2(2Ty + T,). We say that RK2 is faster because to get the
same error, the time requirements are

B O(N3/?) for Euler's method,
1 O(N) for RK2.

(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CcP1 22 /35

Differential equations

Example

Problem 9: The RK2 solution of the equations

dx dv
w= g%
x(nh+ g) = x(nh) + gv(nh)
h h
v(nh + 5) = v(nh)— Ex(nh)
x(nh4+ h) = x(nh)+ hv(nh+ g) = <1 - h2> x(nh) + gv(nh)
v(nh+h) = v(nh)— hx(nh+ g) = <1 - f;) v(nh) — gx(nh).

Verify using Mathematica that this is indeed the correct solution of
the equations upto and including the O(h?) term.

(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CcP1

23 /35

Differential equations

A problem

Problem 10: Implement a leap-frog integration for the anharmonic
oscillator))
2 4

H= EP + aq
as a subroutine in f90 and ¢ which is suitable for updating an ensemble
of initial conditions; i.e., it should take a set of (staggered) initial phase
space positions (p;, g;) where 1 <7 < N and a time step, h, and return
the final phase space positions. Also implement a method for a
half-step evolution of p; in the beginning and end as a separate
subroutine.

Take N = 1000 different initial conditions distributed uniformly within
the phase space volume with H < 1. Find the density of points within
the phase space volumes with H < 1/4, 1/2 and 1. Evolve the systems
using your program for trajectories of time duration 1, 2, 5 and 10
units. At the end of these times compute the same three phase space
densities as initially. Are these conserved?

(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CcP1 24 / 35

Function approximation

Outline

a Function approximation
@ Finite differences
@ Splines
@ A first look at Fourier series

(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1

CP1

25 /35

Function approximation Finite differences

Recursive evaluation of the Lagrange interpolation formula

Let Pj.j+m be the m-th order polynomial interpolating the function at x;,
Xi+1, ***, Xi+m- Then one has Neville's recurrence formula—

1

Xi+m — Xj

t—xi Piigm-1(t)

Pi:i-l—m(t) = t — Xi+m P,‘+1;i+m(t) .

which starts from the constant polynomials P;.;(t) = y;.

If the error in P;it1,...ixm iS 6j it+1,.i+m. Whose magnitude is bounded by
6§, then the recurrence gives—
) _s

Therefore errors in the function values do not grow unless the knot points
are so close that terms like xj+,, — x; are dominated by catastrophic loss of
significance.

For a further improvement on this algorithm, see Numerical Recipes.

(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CcP1 26 / 35

Xitm — X X — Xj

0741, ivm| <0 <

Xitm — Xi Xitm — Xi

Function approximation Finite differences

Neville's process as elimination

This can be seen as a process of elimination. Make the Taylor expansions
of the function at xg and x;—

1
f(t) = f(x0)+ hof'(x0) + 5hgf”(xo) e
1
f(t) = F0a)+mf(a)+ 5hF(Ga) + -
where h; = t — x;. Neville's process applied to these expansions gives

(h — ho)f(t) = hof(x1) — hif(x0) + [hoh1 {f'(x1) + hif"(x1) + -}
—hohy {f/(Xg) + hof”(Xo) =+ }] —+ e

hoh
= hof(xa) = hif(x0) + =5 [hof"(xa) = mf”(x0)] + -
This removes the first derivative. What happens at the next step?

(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CcP1 27 /35

Function approximation Finite differences

Is Lagrange interpolation a well-posed problem?

Problem 11: Write a Mathematica code which starts from a Taylor
expansion of a function (and its derivatives) around some number of
knot points. Apply successive steps of Neville's process to this and
show that at each step of the process one more derivative is removed.

Problem 12: We have shown above that initial errors, ¢, in the
function values, y;, do not grow when using Lagrange interpolation
using Neville's recurrence. Check what happens to the Newton
polynomials, divided differences, the Lagrange interpolation formula
and Neville's recurrence when the knot point, x;, are changed slightly.
What happens when one of the knot-points is removed entirely? Is the
behaviour equally stable (or unstable) for interpolation (i.e.,

xo < t < xp) and extrapolation (t < xp or t > xp)?

(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CcP1 28 / 35

Function approximation Finite differences

Numerical integration

Problem 13: Given a polynomial approximation to tabulated data on
functions, give expressions for integrating them. Note that the
integration formulae should only involve the tabulated function values
and constants. Read the Newton-Cotes integration formulae and check
what kind of function interpolations they come from.

Problem 14: Consider integrals of functions with poles in the region

of integration, such as
[ee]
/:/ ax PO
oo Xx—1
where P(1) # 0. These are often regularized using the Cauchy
Principal Value prescription—

. 1—€ e
- Hm &ﬂﬁ+/ o P
1

Ce—0) o Tx-— x—1

+e
Find an efficient method of evaluating the principal value. How does
the value change if the integral is defined as the sum over the the two
intervals [—o0, 1 — 5¢] and [1 + €, 0]?

(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CcP1 29 / 35

Function approximation Splines

Smooth polynomials

Given knot points {xp, x1 } and function values {yo, y1}, one has a linear
interpolation

t—Xx1 Xp—t

g(t) = A(t)yo+B(t)yr, where A(t) =

B(t) =

Xo—Xl’ X0—X1.

The first derivative is constant in the interval (xg, x1). In the next interval,
(x1,x2), the first derivative is again constant but a different value. As a
result, the second derivative is discontinuous at the knot points.

If one had information on the second derivatives at the knot points, one
could build an interpolating function

h(t) = A(t)yg + B(t)y1"
Using this, one could try to make cubic interpolating function
F(t) = g(t) + (t — xo)(t — x1)h(t),
and arrange it to have continuous first derivatives at the knot points. This

is the idea of a spline.
(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CcP1 30 /35

Function approximation Splines

Cubic splines

In fact the first derivative is
f'(t) =g'(t)yr1 + (t —xo + t — x1)h(t) + (t — x0)(t — x1) A (¢).

At the knot point x; one has the two expressions—

f/(X]_): Yo—2n f/(X]_): yi—Y2

— (x0 — x1)y1 + (x1 — x2)yy

Xp — X1 X1 — X2

Continuity of the derivative is obtained by equating these two expressions.
This gives a solution for the unknown quantity—

I o=y yi—y
X0 —X2 [X0 —X1 X1 — X2

1
n =

One can eliminate y/ at every knot point except xp and xy. At these two
points one can give a boundary condition of one’s choice.

(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CcP1 31/35

Function approximation A first look at Fourier series

A Fourier series

A periodic function y(t) = y(t + L), has a compact representation as the

Fourier series
(27Tltk>
E f exp .

The Fourier coefficients are given by the solution of a complex van der
Monde matrix equation

1z - z'\ (fo Yo
1z - 2z fi |
1 ZN Z,,VV fN YN

where z; = exp(27ix;/NL) and |zj| = 1. If the knot points x; = jL, then
the z;s are roots of unity, and the sum over the elements of all but one row
add up to zero. Since the rows orthogonal to each other, the matrix is

invertible.
(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CcP1 32/35

Function approximation A first look at Fourier series

Fourier inversion

In fact, the definition of the Fourier transformation,
N .
1 2mixik
i = —— ; - J
7 N+1jz_;yjexp< L >

gives the inverse (zj‘ is the complex conjugate of z;)

1o 1\ [\ [h

1 oz o oy] A
N+1 : : 3 I

" ogN o V) \ww fn

Problem 15: Hadamard's bound states that for a real

(N +1) x (N + 1) matrix whose elements are bounded by unity, the
determinant is at most (N + 1)(N*1)/2 What relation do the Fourier
matrices hold to Hadamard matrices, i.e., those real matrices which

satisfy the bound?

(©: Sourendu Gupta (TIFR) CcP1

Lecture 5: Finite differences 1

33 /35

@ Finite differences

e Interpolating tabulated values
© Difference equations
© Differential equations
e Function approximation
@ Finite differences

@ Splines
@ A first look at Fourier series

© References

«O>r «Fr « >

References

References and further reading

© Numerical Recipes, by W. H. Press, S. A. Teukolsky, W. T.
Vetterling, B. P. Flannery, Cambridge University Press. Treat this as
a well written manual for a ready source of building blocks. However,
be ready to go into the blocks to improve their performance.

© E. H. Neville, “lterative interpolation”, Journal of the Indian
Mathematical Society, Vol 20, p. 87 (1934).

© Several points in this lecture are illustrated in the associated
Mathematica notebooks. These notebooks also have additional
examples. They are given in tar.gz format. Unpack them using the
tar -xvzf command.

(©: Sourendu Gupta (TIFR) Lecture 5: Finite differences 1 CcP1 35 /35

http://theory.tifr.res.in/~sgupta/courses/cp2010/Math/lec5.tar.gz

	Outline
	Finite differences
	Interpolating tabulated values
	Difference equations
	Differential equations
	Function approximation
	Finite differences
	Splines
	A first look at Fourier series

	References

