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Randomness Sequences

What is random?

To the best of our present physical understanding, the universe is truly
random. Apparent determinism arises through a chance cancellation of
randomness (called quantum decoherence).
Take a single atom in a trap and switch on a uniform magnetic field. Then
make measurements of the spin component in a fixed direction orthogonal
to the magnetic field. If the spin of the atom is S~, then the results of
successive measurements are random numbers k~ where −S ≤ k ≤ S . All
values of k are equally likely, and successive values of k are completely
independent of each other. Then

〈k〉 = 0, 〈kikj〉 =
δij

(2S + 1)
.

Our operational definition of the randomness of such a sequence
{ki |0 ≤ i ≤ N, −S ≤ ki ≤ S} is that knowing any N of the values ki does
not allow us to predict the value of the remaining one with a probability
better than 1/(2S + 1).
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Randomness Distributions

Uniform and other distributions

In the example that we took, the probability that a measurement yields a
value k is

P(k) =
1

2S + 1
, −S ≤ k ≤ S .

Successive measurements are uncorrelated, i.e., the joint probability of
two measurements giving values k + 1 and k2 is

P(k1, k2) = P(k1)P(k2) =
1

(2S + 1)2
.

The joint probability of N number of measurements is a product of the
probabilities of each of them [Feller].
The probability that exactly r of the N measurements gives the value ℓ is
the binomial distribution. If P(ℓ) = p, then the above probability is

B(N, r) =

(

N

r

)

pr (1 − p)N−r .

In the limit N → ∞ this becomes a Gaussian in the variable x = r/N.
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Randomness Distributions

Continuous variables

In most applications it is useful to discuss random real numbers. Such
distributions involve a probability density function, P(x), where x is real
number lying in some interval D (which can be the whole real line). The
distribution is normalized, i.e.,

∫

D

P(x)dx = 1.

Then the probability that the variable lies in a small interval of width dx

around a value x is P(x)dx .

Problem 1: Assume that random numbers, x , are drawn from an
uniform distribution over the interval [0, 1]. What is the distribution of
the quantity log(1/x)?
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Randomness Distributions

Wider definitions of randomness

Problem 2: Find the probability distribution of m = k1 + k2. How
could we modify the operational definition of randomness in order to
accommodate our intuition about the randomness of a sequence of
measurements of m?

If the experiment consists of N successive measurement of k and the
outcome is r , i.e., the number of measurements where k = ℓ, then how
does not modify the operational definition of randomness in order to
accommodate out intuition that the sequence of r ’s is random?

Given a set of uncorrelated ki , define s0 = k0 and si = rsi−1 + ki . Find
the correlation function where r is a fixed number (0 < r < 1)

C (t) =
〈si si+t〉

〈s2
i 〉 〈s2

i+t〉
.

How should one modify the operational definition of randomness in
order to accommodate sequences such as these si?
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Randomness The χ
2 statistic

Which sequence is random?

1 1101011111 1100100100 1001011011 0110110111 0110110110 1101101111

1111111111 1111111

2 1010110001 0100110100 1001100010 0011110001 0010100100 0001100010

1010001000 1110101

The first has 57 1’s and 21 0’s, the second has 32 0’s and 46 1’s. In a
random random sequence one would expect n(0) = n(1) = 39. But there
are fluctuations in these numbers.
Is the second sequence within the range of expected fluctuations? Define

χ2(N) =
[n(0) − p0N]2

p0N
+

[n(1) − p1N]2

p1N
,

where N = n(0) + n(1), and p0 = p1 = 1/2 are the expected probabilities
of a bit being 0 or 1. The assumption is that fluctuations go as the square
root of the expected number. The larger this quantity, the less likely are
p0 and p1 correct. When χ2(N) ≃ 1 then the sequence is random [Knuth].

c©: Sourendu Gupta (TIFR) Lecture 6: Random Numbers 1 CP 1 8 / 32



Randomness The χ
2 statistic

Definition of χ
2

In an experiment with M outcomes and probabilities of the i-th outcome
being pi , one defines

χ2(N, M − 1) =
M
∑

i=1

V 2
i where Vi =

(Ni − piN)2

piN
,

where Ni is the observed number of times the outcome is i and N is the
total number of trials (N =

∑

i Ni ). Since the number of independent
observations is M − 1 of the Ni ’s, the number of degrees of freedom is
said to be M − 1. The probability of having a value of χ2(N, M) can be
computed given {pi}.
Example: Suppose M = 2 and p0 = p, p1 = 1 − p. There are 2N

sequences of length N. The probability of n(0) = r and hence of
n(1) = N − r is the binomial distribution p(N, r) =

(

N
r

)

pr (1 − p)N−r . The
value of χ2 is N(1 − 2r/N)2 with the probability p(N, r) + p(N, N − r) if
r 6= N/2.
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Randomness The χ
2 statistic

The distribution of χ
2 values

For every finite N the distribution of χ2 values can be computed as in the
above example. As N → ∞, the Vi go to a continuous variable. Also, in
this limit each Vi can be treated as a Gaussian random number. Then the
distribution of the variable χ2 is

P(χ2) =

∫ M
∏

i=1

(

dVi√
2π

e
−V 2

i
/2

)

δ

(

χ2 −
M
∑

i=1

V 2
i

)

.

Problem 3: Evaluate the distribution P(χ2). The simplest way to do
this is to take the Fourier transform of both sides. The integral on the
right is then easily evaluated. P(χ2) can be found by inverse Fourier
transformation. Plot the result for different M. Check your results
against tables of χ2 values.
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Randomness The χ
2 statistic

Checking the randomness of a sequence

Problem 4: The frequency test: If a sequence of N bits is random
with equal probabilities of 0 and 1, then the expected number of each
bit is N/2. Compute the expected numbers of pairs of bits, triplets of
bits, etc.

Coupon collector’s test: What is the probability that you will have to
take exactly r bits in order to get both a 0 or 1? In other words, what
is the probability that you will have a run of r − 1 0’s or 1’s? Ares
successive values of r independent? [Knuth]

Write a general purpose code that takes as input a sequence of random
numbers {ri |1 ≤ i ≤ N}, the number of different values of ri , i.e., M,
and implements the frequency and coupon collector’s tests for the
sequence. The answer should be the probability from each test that the
sequence is an uncorrelated sequence drawn from an uniform
distribution.

Use this code to check whether either of the sequence of bits shown in
page 7 is random.
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Computability, information and randomness Random real numbers

Is this a random number?

0.318309886
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Computability, information and randomness Random real numbers

What is a random number?

1 Rational numbers are a measure-zero set in the real numbers. Hence
any rational number cannot be a random number.
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Computability, information and randomness Random real numbers

What is a random number?

1 Rational numbers are a measure-zero set in the real numbers. Hence
any rational number cannot be a random number.

2 Polynomials are a measure-zero subset of all functions, hence any
algebraic number cannot be a random number.
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What is a random number?

1 Rational numbers are a measure-zero set in the real numbers. Hence
any rational number cannot be a random number.

2 Polynomials are a measure-zero subset of all functions, hence any
algebraic number cannot be a random number.

3 The number of real numbers is ℵ0. The probability of drawing any
particular number is zero. Hence no number is random.
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Computability, information and randomness Random real numbers

What is a random number?

1 Rational numbers are a measure-zero set in the real numbers. Hence
any rational number cannot be a random number.

2 Polynomials are a measure-zero subset of all functions, hence any
algebraic number cannot be a random number.

3 The number of real numbers is ℵ0. The probability of drawing any
particular number is zero. Hence no number is random.

4 Alternative argument based on Kolmogorov complexity: any number
can be generated by an algorithmic process. If n bits of the number
(for every value of n) cannot be generated by a program which is less
than O(n) bits long, then the number is said to be random. [Knuth]
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Computability, information and randomness Random real numbers

What is a random number?

1 Rational numbers are a measure-zero set in the real numbers. Hence
any rational number cannot be a random number.

2 Polynomials are a measure-zero subset of all functions, hence any
algebraic number cannot be a random number.

3 The number of real numbers is ℵ0. The probability of drawing any
particular number is zero. Hence no number is random.

4 Alternative argument based on Kolmogorov complexity: any number
can be generated by an algorithmic process. If n bits of the number
(for every value of n) cannot be generated by a program which is less
than O(n) bits long, then the number is said to be random. [Knuth]

5 In other words, if the information content in n bits of the number can
be compressed into less than O(n) bits, then the number is not
random.
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Computability, information and randomness Random real numbers

Information and compressibility

Problem 5: Write a program which counts the number times each
ascii character appears in it. The probability of a character αi in that
file is pi = Ni/(

∑

Ni ). The entropy of the file is

S = −
∑

i

pi log pi .

For what values of {pi} does S reach its minimum? The negative of
S/ log 2 is called Shannon information. It is maximum when the
entropy is minimum.

Take a large set of ascii files from many sources (the unix command
file tells you whether a file is ascii). Find the entropy of each file, Sf ,
using your program. Find the length of each file in bytes, Lf . Then
compress each file using the unix utility gzip, and find its new length
in bytes L′

f . The compressibility of the file is Kf = Lf /L′

f . Plot the
pairs (Sf ,Kf ). What is the functional relation between the two? Do
you have a theory for it?
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Computability, information and randomness Turing machines

Which programming language?

The length of a program which specifies a number can be different in
different programming languages. For a precise definition one uses a
Turing machine.

( 1 + 3 * 2 ) / 7 =

A Turing machine is a model of computation in which a machine reads a
tape with data written on it. The machine has a finite number of internal
states (colours) which may change according to what is read from the
tape. The tape contains a sequence of cells which may be blank or marked
up with a (finite) alphabet of symbols. The machine may cause the tape
to move left or right. and it may write on the tape or erase the contents of
a cell.
The Church-Turing thesis is a theorem which states that all possible
computations can be carried out by an appropriate Turing machine. There
exists an universal Turing machine which can simulate any other Turing
machine, and hence can carry out all possible computations.
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Computability, information and randomness Turing machines

Evaluating an arithmetic expression

5+2*12−6(11−2) = 5+2*12+(−6)*(11+(−2))

+

+

+

*

*5

122 11 −2

−6=

=++(5)*(2)(12)*(−6)+11(−2)
=+*+(11)(−2)(−6)+*(2)(12)5

An arithmetic expression is a sequence
of binary operations (addition, mul-
tiplication and their inverses) along
with grouping through brackets. Ev-
ery expression can be written as a
tree: an operation on a every internal
vertex and a number on every termi-
nal vertex.

Every tree is evaluated by traversing it in a certain order. When the order
of traversal is written out we have the expression in Polish notation (PN).
Writing it out in the reverse order we have the reverse Polish notation
(RPN). Not quite correct

Problem 6: Program a Turing machine which will take any arithmetic
expression written in RPN and evaluate it. (Assume for simplicity that
each number can be written in a single cell).
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Computability, information and randomness Turing machines

Codes

Problem 7: Natural languages when written out using their usual
alphabets do not have the minimum possible entropy. The probabilities
of all the letters are not equal; the probabilities of two-letter sequences
cannot be obtained by assuming that successive letters are
independent, and similarly for three, four or five letter sequences.

As a result, a substitution cipher (i.e., an enciphering system in which
each letter, or di-graph, tri-graph, etc., is replaced by another can be
broken by statistical analysis. (Deciphering may involve collecting a
large body of cipher text).

Now construct the following one-time pad. Evolve any code for the
letters of the alphabet using d symbols (for example, each letter of the
Roman alphabet can be uniquely encoded using 5 bits, since that
allows us to code 32 symbols). Then for every plain text of N symbols
(i.e., dN bits), generate a stream of dN random bits. The cipher text is
obtained by adding the two binary streams bit by bit modulo 2. Which
statistical properties of the plain text carry over into the cipher text?
How can one recover the plain text from the cipher?
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Pseudo-random sequences Random digits

Is this a random sequence of digits?

The following sequences of numbers are generated by some simple
algorithm. Which can be distinguished from a truly random sequence?

1 1, 3, 5, 7, 9, 1, 3, 5, 7, 9, 1, 3, 5, 7, 9, · · · generated by the formula
si+1 = si + 2 mod 10
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Pseudo-random sequences Random digits

Is this a random sequence of digits?

The following sequences of numbers are generated by some simple
algorithm. Which can be distinguished from a truly random sequence?

1 1, 3, 5, 7, 9, 1, 3, 5, 7, 9, 1, 3, 5, 7, 9, · · · generated by the formula
si+1 = si + 2 mod 10

2 1, 3, 9, 7, 1, 3, 9, 7, 1, 3, 9, 7, 1, 3, 9, · · · generated by the formula
si = 3i−1 mod 10
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Pseudo-random sequences Random digits

Is this a random sequence of digits?

The following sequences of numbers are generated by some simple
algorithm. Which can be distinguished from a truly random sequence?

1 1, 3, 5, 7, 9, 1, 3, 5, 7, 9, 1, 3, 5, 7, 9, · · · generated by the formula
si+1 = si + 2 mod 10

2 1, 3, 9, 7, 1, 3, 9, 7, 1, 3, 9, 7, 1, 3, 9, · · · generated by the formula
si = 3i−1 mod 10

3 1, 2, 3, 5, 7, 1, 3, 7, 9, 3, 9, 1, 7, 1, 3, · · · generated by si = primei

mod 10
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Pseudo-random sequences Random digits

Is this a random sequence of digits?

The following sequences of numbers are generated by some simple
algorithm. Which can be distinguished from a truly random sequence?

1 1, 3, 5, 7, 9, 1, 3, 5, 7, 9, 1, 3, 5, 7, 9, · · · generated by the formula
si+1 = si + 2 mod 10

2 1, 3, 9, 7, 1, 3, 9, 7, 1, 3, 9, 7, 1, 3, 9, · · · generated by the formula
si = 3i−1 mod 10

3 1, 2, 3, 5, 7, 1, 3, 7, 9, 3, 9, 1, 7, 1, 3, · · · generated by si = primei

mod 10

4 1, 2, 3, 5, 8, 3, 1, 4, 5, 9, 4, 3, 7, 0, 7, · · · generated using
si+1 = si + si−1 mod 10
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Pseudo-random sequences Random digits

Is this a random sequence of digits?

The following sequences of numbers are generated by some simple
algorithm. Which can be distinguished from a truly random sequence?

1 1, 3, 5, 7, 9, 1, 3, 5, 7, 9, 1, 3, 5, 7, 9, · · · generated by the formula
si+1 = si + 2 mod 10

2 1, 3, 9, 7, 1, 3, 9, 7, 1, 3, 9, 7, 1, 3, 9, · · · generated by the formula
si = 3i−1 mod 10

3 1, 2, 3, 5, 7, 1, 3, 7, 9, 3, 9, 1, 7, 1, 3, · · · generated by si = primei

mod 10

4 1, 2, 3, 5, 8, 3, 1, 4, 5, 9, 4, 3, 7, 0, 7, · · · generated using
si+1 = si + si−1 mod 10

5 1, 2, 3, 6, 1, 0, 7, 8, 5, 0, 3, 8, 1, 2, 1, · · · from
si+1 = si + si−1 + si−2 mod 10
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Pseudo-random sequences Random digits

Is this a random sequence of digits?

The following sequences of numbers are generated by some simple
algorithm. Which can be distinguished from a truly random sequence?

1 1, 3, 5, 7, 9, 1, 3, 5, 7, 9, 1, 3, 5, 7, 9, · · · generated by the formula
si+1 = si + 2 mod 10

2 1, 3, 9, 7, 1, 3, 9, 7, 1, 3, 9, 7, 1, 3, 9, · · · generated by the formula
si = 3i−1 mod 10

3 1, 2, 3, 5, 7, 1, 3, 7, 9, 3, 9, 1, 7, 1, 3, · · · generated by si = primei

mod 10

4 1, 2, 3, 5, 8, 3, 1, 4, 5, 9, 4, 3, 7, 0, 7, · · · generated using
si+1 = si + si−1 mod 10

5 1, 2, 3, 6, 1, 0, 7, 8, 5, 0, 3, 8, 1, 2, 1, · · · from
si+1 = si + si−1 + si−2 mod 10

6 7, 7, 4, 1, 5, 6, 4, 0, 4, 1, 5, 6, 1, 7, 8, 7, 5, 2, 7, 9, 6, 4, 6, 0, 6, 9,
5, 4, 1, · · · using si+1 = (si%4 == 0)?si/4 : si + si−1 mod 10
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Pseudo-random sequences Linear congruential generators

Linear congruential generators

Pseudo-random numbers are sometimes generated by an algorithm called a
linear congruential generator (LCG):

si+1 = (asi + c)modm.

Random digits are generated when m = 10.

1 The sequence cannot have length greater than m.

2 If the sequence has length m for some s0, then it has length m for all
s0.

3 There are pairs (a, c) for which the sequence has length less than m.

Problem 8: Write a program which runs over all possible values of
(a, c) for fixed m and writes out those values of the pair for which the
cycle length is m. Investigate all m between 4 and 20. Look for, and
report, regularities in the results. Check your hypotheses with larger m.
Can you prove some of the regularities?
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Pseudo-random sequences Linear congruential generators

Another representation of a sequence

Problem 9: The LCG si+1 = (7si + 3)mod 10 starting from any digit
gives sequences of lengths 4 or 2. The sequences are 0341, 27, 5896,
and their cyclic permutations. These can be expressed as the digit
sequence of a rational number.

For a 2-digit recurrence we have—

0.abababababab · · · =
a

10
+

b

102
+

a

103
+ · · · =

10a + b

99
.

For a 4-digit recurrence one obtains —

0.abcdabcdabcd · · · =
d + 10(c + 10(b + 10a))

9999

What are the rational numbers which represent the digit sequences for
various LCG?

Use a similar construction for any LCG specified by the triplet (a, c ,m)
to find the rational number r acm

n representing the sequence with s0 = n.
When the period is maximum what special properties are enjoyed by
r acm
0 ?
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Pseudo-random sequences Linear congruential generators

Continued fractions

Problem 10: r
7,3,10
0 = 0.034103410341 · · · . Using a simple recursive

procedure we find

r
7,3,10
0 =

1

1/r
7,3,10
0

=
1

29 + 0.3225806 · · · =
1

29 + 1
3+ 1

10

.

For the same generator we find

r
7,3,10
5 = 0.58965896 · · · =

1

1 + 1
1+ 1

2+ 1

3+ 1

2+ 1

7+ 1
3

.

Is there anything special about r acm
0 when the period is m?

Can continued fractions be used in any way to represent the
Kolmogorov-Chaitin complexity of a real number?

Continued fractions were first used by Aryabhata, and subsequently analyzed by Euler.
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Pseudo-random sequences Lagged Fibonacci Generators

Fibonacci generators

Random integers can be generated by the sequence
si+1 = (si + si−1)modm. The initial conditions (s0, s1) determine the
sequence. Digits are generated when m = 10.

1 The sequence starting from (0, 0) is clearly trivial.

2 The sequence cannot have length greater than m2 − 1.

3 If the sequence has length m2 − 1 for some (s0, s1), then it has the
same length for all initial conditions.

Problem 11: Write a program which runs over all possible values of
(s0, s1) for fixed m and writes out the cycle length for each initial
condition. Investigate all m between 4 and 20. Look for, and report,
regularities in the results. Check your hypotheses with larger m. Can
you prove any of the regularities?
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Pseudo-random sequences Lagged Fibonacci Generators

Variants of Fibonacci generators

A general r -term lagged Fibonacci generator (LFG) can be written as

si+r =





r−1
∑

j=0

ajsi−j



modm,

where aj are fixed integers. The maximum possible cycle length is mr − 1.
The theory of the best choices of {aj} is incomplete: there are some
theorems on how to maximize the cycle length, but there is little theory of
the statistical properties of the sequences. As a result, numerical
experiments are often important to understand the behaviour of these
generators.
A widely used generator is

si = (si−24 + si−55)mod m

where m = 2e and at least one of s0, · · · , s54 is odd. The period of this
generator is 2e−1(255 − 1).
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Pseudo-random sequences Lagged Fibonacci Generators

Testing Fibonacci sequences

Problem 12: Some LFG’s can be classified by the pair (l , k), where

si = (si−l + si−k) mod 2e .

Some useful pairs are (24, 55), (38, 89), (37, 100), (30, 127), each of
which has period 2e−1(2k − 1). Generate large sequences of numbers
from each of these generators and perform frequency and coupon
collector’s tests on them. Measure and plot the correlation functions
for each of these sequences.

Problem 13: Take the LGF’s in the problem above (and any others of
your choice) with m = 2. Construct the rational numbers which
represent the cycles of these generators. Is there any pattern?
Construct the continued fraction representation of these numbers. Is
there any pattern to these?
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Pseudo-random sequences Lagged Fibonacci Generators

Hidden order: the Fibonacci sequence

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  1  2  3  4  5  6  7  8  9

Group into quadruplets, treat as coordinates in 4d space. Plot 1st against
4th coordinates.
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Pseudo-random sequences Lagged Fibonacci Generators

Disrupting order in the Fibonacci sequence

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  1  2  3  4  5  6  7  8  9

3-term recurrence. Group into quadruplets, treat as coordinates in 4d
space. Plot 1st against 4th coordinates.
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Pseudo-random sequences Lagged Fibonacci Generators

Disrupting order in the Fibonacci sequence

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  1  2  3  4  5  6  7  8  9

4-term recurrence. Group into octets, treat as coordinates in 8d space.
Plot 1st against 6th coordinates.
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Pseudo-random sequences Lagged Fibonacci Generators

Order in the LCG

Problem 14: The LCG’s defined by the triplets (a, c ,m) with values
(21, 1, 40), (21, 1, 80), (21, 1, 100), (21, 1, 1000), (21, 1, 10000),
(21, 1, 100000) all have the maximum possible cycle lengths, m. The
potency of an LCG is defined to be the minimum value of s such that

(a − 1)s = 0 (mod m).

What are the potencies of each of the above generators?

Construct bits bi = 0 when si < m/2 and 1 otherwise. Examine these
bits for randomness using the frequency and coupon collector tests.
How are the results correlated with the potency?

Also perform the equidistribution test. Define 4-dimensional vectors
(si , si+1, si+2, si+3) where i mod 4 = 1. Check in two-dimensional
subspaces whether the points lie in a small number of lines. How are
the results correlated with potency?

How do the LFG’s with maximum cycle lengths perform on the
equidistribution test?
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References and further reading

“Introduction to Probability Theory and its Applications”, by W.
Feller, John Wiley, 1983. The comprehensive classic textbook on
probability theory and its applications. Highly recommended reading,
especially for the very well thought out examples.

“The Art of Computer Programming: Seminumerical Algorithms”, by
Donald E. Knuth, Addison Wesley, 2000. This is the classic reference
on random number generation and testing. If you can solve all the
exercises then you probably don’t need to take this course.

“Gödel, Escher, Bach: an Eternal Golden Braid”, by D. Hofstadter Jr.
A popular account of complexity, Gödel’s theorem, the Church-Turing
Thesis, etc.. More entertaining than illuminating.

“Introduction to Automata Theory, Languages and Computation”. by
J. Hopcroft and J. Ullman, Addison-Wesley, 1979.
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