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Preliminaries

Quick recap

The eigenvalues of a square matrix, A, are the solutions of its
characteristic polynomial p(z) = |zI − A|. The set of eigenvalues
σ(A) is called the spectrum of A. Eigenvalues can also be defined as
the singular points of the resolvent ρ(z) = |(zI − A)−1|. If λ is an
eigenvalue and v is a vector such that Av = λv, then v is called a
(right) eigenvector. If v†A = λv† then v is called a left eigenvector.

The Hermitean conjugate of a matrix, A, denoted A†, is defined as
follows

(

A†)
ij

= A∗
ji . If A is real, then the Hermitean conjugate is the

transpose. The eigenvalues of A† are complex conjugates of the
eigenvalues of A. The left eigenvectors of A are the right eigenvectors
of A† and vice versa.

A normal matrix commutes with its Hermitean conjugate. The right
eigenvectors of every normal matrix are Hermitean conjugates of the
left eigenvectors [Wilkinson].
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Preliminaries

Some warm-up problems

Problem 1: Hermitean matrices (A† = A), anti-Hermitean matrices
(A† = −A), unitary matrices (A† = A−1) and anti-unitary matrices
(A† = −A−1) are normal. Exhibit a simple matrix such that A† = A6

but any smaller power of A is not equal to A†. Is any matrix of the
form A† = f (A) normal? Are there any restrictions on the function f ?
Does this exhaust the class of normal matrices?

Problem 2: Write fast routines for copying one vector into another,
adding or subtracting two vectors and taking the 2-norm of any vector.
Count the complexity of each algorithm and check that the speed of
your program is in agreement with your count. These will be building
blocks of your later exercises, so get them to work in nanoseconds
(since all modern CPUs work on multi GHz clocks, this is practical).

Problem 3: Speed up your implementation of the Gauss elimination
routine to work in nanoseconds. This routine will be used as a basic
building block later, so tuning its performance is important.
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Preliminaries

Bounding eigenvalues

Gershgorin’s theorem: If A is a square matrix, then σ(A) lies in the
union of disks in the complex plane

⋃

i







z

∣

∣

∣

∣

|z − Aii | ≤
∑

j 6=i

|Aij |







.

Example: These matrices have the same characteristic equation:

A =





15 −3 1
1 −2 1
1 6 1



 , B =





15 −2
√

2 −
√

2
0 −4 −4√
2 1 3



 .

The eigenvalues of A lie in the union of three disks |z − 15| ≤ 4,
|z + 2| ≤ 2 and |z − 1| ≤ 7. The disk centered on z = 15 is entirely
disjoint from the other two and must contain one eigenvalue. The
eigenvalues of B are in the union of the disjoint disks |z − 15| ≤ 3

√
2,

|z + 4| ≤ 4 and |z − 3| ≤ 1 +
√

2. Although σ(AT ) = σ(A), the
Gershgorin disks of A and AT may be different.
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Preliminaries

Gershgorin disks for A and B
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The full lines are the disks constructed from rows, and the dashed lines
from columns (disks for A on the left, B on the right).
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Preliminaries

A problem

Problem 4: Construct orthogonal transformations of the matrix A of
the previous problem using the orthogonal matrices

U(φ) =





1 0 0
0 cos φ sin φ
0 − sin φ cos φ



 ,

in the form M(φ) = UT (φ)MU(φ). Are there any values of φ for which
the Gershgorin disks are disjoint?

Problem 5: Use Mathematica to draw the Gershgorin disks for any
given φ. Using Mathematica functions construct an animation of the
figure as φ changes from 0 to 2π.

Problem 6: Convert your Mathematica code for animation of
Gershgorin disks into a Mathematica program which works on any
one-parameter family of matrices of any dimension.
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Preliminaries

Condition number of an eigenvalue

Let A be a square matrix with a non-degenerate eigenvalue λ. Let x be
the normalized right eigenvector (Ax = λx) and y† the normalized left
eigenvector (y†A = λy†). The condition number of λ, K (λ) = y†x,
determines how much it changes when A is perturbed slightly [Golub].
Let A be perturbed to A + ǫB where ||B||2 = 1. Let the perturbed
eigenvalue and eigenvectors be λ(ǫ) and x(ǫ), where
(A + ǫB)x(ǫ) = λ(ǫ)x(ǫ). Taking the derivative with respect to ǫ as ǫ → 0,
we obtain

(A − λ)x′ + Bx = λ′x.

Taking a dot product with y† kills the first term and gives

λ′ =
y†Bx

y†x
≤ 1

K (λ)
.

For a normal matrix K (λ) = 1, so one can find eigenvalues without great
numerical sensitivity. For non-normal matrices K (λ) can be small so the
eigenvalues may be sensitive to numerical errors.
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Simple ideas that work

Maximum eigenvalue of a matrix

If A is a non-deficient square matrix
whose maximum eigenvalue is unique,
then it can be obtained by the algo-
rithm on the right. Its output is the
eigenvalue λ and the eigenvector v.
The successive estimators of λ should
converge exponentially to the correct
answer. If the matrix dimension is N

then step 4 takes O(N2) steps and ev-
ery other step is O(N).

1 v is a random unit vector

2 r = v

3 until ||r||2 < ǫ do

4 w = Av

5 w = w/||w ||2
6 r = w − v

7 λ = v†w

8 v = w

9 end do

Problem 7: By writing v as a linear combination of eigenvectors,
prove that the algorithm works under the conditions specified and find
the rate of convergence. Complete the computation of the complexity.
Write a program and check that its performance tallies with your count
of the complexity.
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Simple ideas that work

Inverse iteration: improving approximate eigenvalues

For a square matrix A if an isolated
eigenvalue is known to have value ap-
proximately z , then inverse iteration
refines the estimate of that eigen-
value. The process should converge
exponentially. The cost of the process
is dominated by the inversion of the
matrix, i.e., the solution of the linear
system (A − z)w = v. Efficient pro-
gramming of the function for Gauss
elimination will be essential to this
routine, since that function is called
repeatedly inside this.

1 v is a random unit vector

2 r = v

3 until ||r||2 < ǫ do

4 w = (A − z)−1v

5 w = w/||w ||2
6 r = w − v

7 v = w

8 end do

9 λ = w†Aw
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Real symmetric matrices Jacobi’s method

Eigenvalues of symmetric matrices

Real symmetric matrices, A, have real eigenvalues. They can be
diagonalized by orthogonal transformations, i.e., it is possible to find an
orthogonal matrix O such that O−1AO is diagonal. The columns of O are
eigenvectors of A.
Example: Consider the real symmetric matrix

A =





15 1 1
1 −2 6
1 6 1



 .

The Gershgorin disks are |z − 15| ≤ 2, |z + 2| ≤ 7 and |z − 1| ≤ 7. The
last two disks overlap. Since all the eigenvalues are real, it should be
possible to transform A so that the disks are non-overlapping.
Jacobi’s method consists of building successive orthogonal
transformations which shrink the Gershorgin disks by monotonically
reducing the sum of the absolute values of the off-diagonal elements:

J(A) =
∑

i 6=j

|Aij |2.
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Real symmetric matrices Jacobi’s method

The 2 × 2 case

Consider the transformation
(

b11 0
0 b22

)

=

(

c −s

s c

)(

a11 a12

a12 a22

)(

c s

−s c

)

where c = cos φ and s = sinφ. A straightforward computation shows that
this implies tan 2φ = 2a12/(a11 − a22) = 1/τ . One derives from this that

cos φ =
1√

1 + t2
, sinφ =

t√
1 + t2

, where t = τ ±
√

1 + τ2.

For stability one uses the smaller of the two solutions. These are called
Jacobi or Givens rotations.
One can apply this to any 2 × 2 block of a larger matrix. Usually one
chooses the block which includes the largest off-diagonal component and
reduces it to zero.
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Real symmetric matrices Jacobi’s method

The Jacobi rotation

This is the Jacobi rotation element obtained for 1 ≤ i < j ≤ N where A is
a real symmetric N × N matrix.

1 If Aij = 0 then c = 1 and s = 0; exit

2 τ = (Aii − Ajj)/(2Aij)

3 If τ ≥ 0 then

4 t = 1/(τ +
√

1 + τ2)

5 else

6 t = −1/(−τ +
√

1 + τ2)

7 end

8 c = 1/
√

1 + t2, s = tc .

This algorithm takes about 10 flops and two square roots.
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Real symmetric matrices Jacobi’s method

Applying the rotation

Problem 8: For a generic N × N matrix the above algorithm
implicitly returns the orthogonal matrix

G (p, q, θ) =



























1 · · · · · · 0
...

...
...

...
0 · · · c · · · s · · · 0
...

...
...

...
0 · · · −s · · · c · · · 0
...

...
...

...
0 · · · · · · 1



























,

i.e., the identity matrix except in a 2 × 2 block. Similarity
transformation by this matrix changes only two rows and two columns
of the matrix A. This has complexity O(N). Compute the complexity
and program this carefully to get the fastest possible implementation
(the code should take less than 10N nanoseconds to execute).
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Real symmetric matrices Jacobi’s method

The Jacobi algorithm

The complete algorithm works like this:

1 do as many sweeps as necessary

2 for each element above the diagonal

3 find the Jacobi rotation

4 apply the rotation

5 end for

6 end do

The inner loop is traversed N(N − 1)/2 times and the effort at each step
is O(N). Hence the CPU time required per sweep (i.e., per traversal of the
inner loop) is O(N3). The number of sweeps usually does not change with
N. There are various opinions about the ordering of the sweep. No matter
what the ordering is, it is not going to be less than an O(N2) process.
It turns out to be most efficient to reduce the matrix to tridiagonal form
and then use some other method.
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Real symmetric matrices Householder’s Algorithm

A Householder transformation

Take a vector w. The Householder matrix

P(w) = 1 − 2
wwT

||w||2 ,

where ||w|| denotes the 2-norm. The matrix is clearly Hermitean since
PT = P. Also, since P2 = 1 = P†P, it is unitary.
Example: in 2 dimensions, let xT = (1, 0) and yT = (1, 1)/

√
2. Then

P(x) =

(

−1 0
0 1

)

, P(y) = −
(

0 1
1 0

)

.

For any vector x, Px = x− 2w(wTx)/||w||2. As a result, wTPx = −wTx.
The Householder transformation flips the component of any vector in the
direction of the chosen vector w.
Example: For the above vectors and matrices

P(x)x = −x, P(x)y =
1√
2

(

−1
1

)

, P(y)x = −
(

0
−1

)

, P(y)y = −y.

c©: Sourendu Gupta (TIFR) Lecture 7: Finding eigenvalues CP 1 19 / 30



Real symmetric matrices Householder’s Algorithm

Another Householder transformation

Define the unit vectors êj to be the j-th column of the identity matrix. For
a given vector v, construct w = v ± ||v||êj . Now wTw = 2(||v||2 ± ||v||vj)
where vj = vT êj . Then,

P(w)v = v − w
2(||v||2 ± ||v||vj)

2(||v||2 ± ||v||vj)
= v − w = ∓||v||êj .

This Householder transformation projects the chosen vector into the
direction j without changing its norm.
Example: in 2 dimensions, let xT = (1, 0) and yT = (1, 1)/

√
2. Set

w = x − ê2 and v = y − ê2. Then

P(w) =

(

0 1
1 0

)

, P(v) =
1√
2

(

−1 1
1 1

)

.

Clearly P(w)x = ê2 and P(v)y = ê2.
Note that the Householder matrices are not rotation matrices. They
generate reflections in certain directions.
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Real symmetric matrices Householder’s Algorithm

Transforming a matrix

At the k-th step of transforming a N × N matrix, A, take the Householder
transformation to be the block diagonal form P = 1k ⊕ PN−k . The
notation means that the identity block is k × k and the Householder block
is (N − k) × (N − k). The vector from which we build the Householder
block is the last N − k components of the k-th column of the matrix being
reduced. A succession of such transformations reduces A to tridiagonal
form.
If w is the vector defining the transformation, then let r = 2Aw/||w||2,
where A is to be transformed. The transformed matrix is

PAP =

(

1 − 2
wwT

||w||2
)

(A − rwT ) = A − (rwT + wrT ) + 2KwwT

= A − (ywT + wyT ).

We have used the notation K = wT r/||w||2 and y = r − Kw.
Implementing this formula optimizes the computation of the transform
without requiring storage for P [Recipes].
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Real symmetric matrices Householder’s Algorithm

An example

Tridiagonalize A =





1 2 3
2 4 5
3 5 6



 , using P =





1 0 0
0 ∗ ∗
0 ∗ ∗





P is built using the last two elements of the first column of A, i.e.,
vT = (0, 2, 3). Then using the definition w = v − ||v||ê2, we have

w =





0
2−

√
13

3



 and P(w) =





1 0 0
0 2/

√
13 3/

√
13

0 3/
√

13 −2/
√

13



 .

For such a simple matrix one can evaluate PAP directly. However, one
also finds that yT = (1.(2 +

√
13)/3, 1). Either way,

PAP = A − (ywT + wyT ) =





1
√

13 0√
13 10 1
0 1 0



 .
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Real symmetric matrices Householder’s Algorithm

Some problems

Problem 9: Write a Mathematica program to tridiagonalize 3 × 3
matrices using the Householder transformation used above. Use your
earlier program to draw the Gershgorin circles of the original and
transformed matrices.

Problem 10: Compute the complexity of the Householder algorithm.
Time the program in Numerical Recipes and see whether this agrees
with your computation of the complexity. Remember that the
coefficients in the scaling of N have to be of the order of a couple of
clock cycles (i.e., nanoseconds). If they are not, then trace the reason
for that and check whether it can be fixed.

Problem 11: Is it possible to diagonalize the tridiagonal form of the
3 × 3 matrices efficiently by Jacobi’s method? If so, compute the
complexity of this algorithm.

Problem 12: Extend Householder’s method to general Hermitean
matrices.
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Real symmetric matrices Tridiagonal matrices

Tridiaogonal matrices



























∗ ∗ · · ·
∗ ∗ ∗ · · ·

∗ ∗ ∗ · · ·
∗ ∗ ∗ · · ·

∗ ∗ ∗ · · ·
∗ ∗ ∗ · · ·

∗ ∗ ∗ · · ·
...

...
...

...
...

...
...

... · · ·



























Unreduced tridiagonal matrix
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Real symmetric matrices Tridiagonal matrices

Tridiaogonal matrices



























∗ ∗ · · ·
∗ ∗ ∗ · · ·

∗ ∗ ∗ · · ·
∗ ∗ 0 · · ·

0 ∗ ∗ · · ·
∗ ∗ ∗ · · ·

∗ ∗ ∗ · · ·
...

...
...

...
...

...
...

... · · ·



























Unreduced tridiagonal matrix
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Real symmetric matrices Tridiagonal matrices

The QR reduction

If A = QR where A is a symmetric tridiagonal n × n matrix, Q is
orthogonal and R is upper triangular, then A′ = RQ = QTAQ. The QR
factorization has the following properites—

1 If A is tridiagonal then Q has bandwidth 1 and R has bandwidth 2.
As a result, A′ is also symmetric and tridiagonal.

2 For any real x , if A − x = QR is the QR factorization, then
A′ = RQ + x is also tridiagonal. This is a shifted QR factorization.

3 If A is unreduced, then the first n − 1 columns of A − x are
independent whatever the value of x . Therefore if x ∈ σ(A) and
A − x = QR then Rnn = 0. As a result, the last column of
A′ = RQ + x is xên. An exact shift reduces the matrix.

4 The QR factorization of A can be computed by a sequence of Jacobi
(Givens) rotations.
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Real symmetric matrices Tridiagonal matrices

The Givens rotation

This is the Givens rotation element which effects the transformation
(

c s

−s c

)T (

a

b

)

=

(

x

0

)

.

The following algorithm [Golub] has input (a, b) and output (c , s).
1 If b = 0 then
2 c = 1; s = 0;
3 else
4 If |b| > |a| then
5 t = −a/b; s = 1/

√
1 + t2; c = st;

6 else
7 t = −b/a; c = 1/

√
1 + t2; s = ct;

8 end
9 end

This algorithm takes about 5 flops and one square root (compare with
Jacobi).
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Real symmetric matrices Tridiagonal matrices

The implicit shift algorithm

1 Until satisfied do

2 d = (An−1,n−1 − Ann)/2

3 µ = Ann − A2
n,n−1/(d + Sign(d)

√

d2 + A2
n,n−1)

4 x = t11 − µ; y = t21;

5 for k = 1 : n − 1 do

6 (c , s) = givens(x , y)

7 A = G (k , k + 1, θ)TAG (k , k + 1, θ)

8 x = tk+1,k ; y = tk+2,k ;

9 end

10 end

Example: in one of the Mathematica notebooks [Codes].
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References and further reading

The Algebraic Eigenvalue Problem, by J. H. Wilkinson, Clarendon
Press, 1965. This is the book on linear algebra: with detailed theory,
very good explanations, and, most of all, beautifully constructed
examples.

Matrix Computations, by G. H. Golub and C. F. van Loan, Johns
Hopkins University Press, 1996. This is the recommended course book
on algorithms in linear algebra. It is also the “industry standard”.

Numerical Recipes, by W. H. Press, S. A. Teukolsky, W. T. Vetterling,
B. P. Flannery, Cambridge University Press. Treat this as a well
written manual for a ready source of building blocks.

There are Mathematica notebooks associated with this lecture.
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