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A generic function and a generic algorithm

A generic function admits a Taylor expansion as

f (x + x0) = f (x0) + ∇f |x0
· x +

1

2
x · A · x + O(x3).

The matrix A is real-valued and symmetric, with matrix elements

Aij =
∂2f

∂xi∂xj

∣

∣

∣

∣

x0

.

If x is D-dimensional then A is a D × D matrix.
Sufficiently close to a minimum, therefore, one can neglect the cubic and
higher order terms and write f (x) = c − b · x + x · A · x/2. The position of
the minimum is given by the solution of the equation

Ax = b.

If A and b can be determined, then this could be the simplest way to
determine the location of the minimum. This takes order D2 time.
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The parabolic approximation

If one performs a Taylor expansion around the point x′0, one again has a
quadratic form of the function (provided that x′0 = x0 + y is also close
enough to the minimum for the higher order terms to be neglected). In
that case one has the new coefficients

c ′ = c − b · y + y · A · y, b′ = b − A · y, A′ = A.

In this approximation the Hessian, A, remains unchanged. Hence it can
be evaluated at the minimum, where its eigenvalues are positive. The
eigenvalues give the curvature of the function at its minimum. Contour
lines are more closely spaced in the direction with the largest curvature.
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A silly algorithm

Choose a set of orthogonal directions ei where 1 ≤ i ≤ D. Starting from
some point, x, minimize along each of the directions in some fixed order.
This does not, in general, reach the minimum of the function in D steps.

Problem 1: Prove or disprove the following assertion: if the
eigenvectors of the Hessian are parallel to ei then one can reach the
minimum in D steps.
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Steepest descent: another silly algorithm

Go along the direction of the gradient, g0, till you reach a minimum. Then
go along the direction of the new gradient, g1, etc.. Again, this does not,
in general, reach the minimum of the function in D steps.

Problem 2: Prove that gi · gi+1 = 0. Prove that the steepest descent
algorithm does not terminate in D steps by showing that one can have
gi · gj 6= 0 when i 6= j .

All algorithms which ignore curvature information will turn out to be silly
in the sense that they may not terminate in D steps.

c©: Sourendu Gupta (TIFR) Lecture 9: The conjugate gradient CP 1 5 / 10



What are conjugate directions?

When f (x) can be treated in the parabolic approximation, the gradient is
∇f = A · x − b. In the i-th step of some minimization, if we move from x
to x + hi , then the change in the gradient is

δ(∇f ) = A · hi .

Suppose we had previously moved along some direction hi−1 to minimize
the function, and we want the gradient after the new move to remain
orthogonal to hi−1, then we must have

hi−1 · δ(∇f ) = hi−1 · A · hi = 0.

The two vectors are not orthogonal, but are said to be conjugate.

Problem 3: How many mutually conjugate directions can one build in
a real D-dimensional space using a symmetric positive definite A?
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Finding conjugate directions

Starting from any vector h0, generate the sequence of matrix monomials
acting on h0: Ah0, A2h0, A3h0, etc.. Each of these can be made conjugate
to all the previous ones by a process similar to the Gram-Schmidt process.

The first steps of this process are as follows. Let h1 = Ah0 + αh0 where
we choose α so that the condition h0Ah1 = 0 is satisfied. Then we choose
h2 = A2h0 + βh1 + γh0 and obtain β and γ by imposing the conditions
h0Ah2 = h1Ah2 = 0. Proceeding in this way we can find all the conjugate
directions. However, this requires that we store up to D vectors.

This process actually builds matrix polynomials acting on a fixed vector:
h0, [A + α]h0, [A2 + βA + (αβ + γ)]h0, etc.. As with many polynomials, it
turns out that there is a two term recurrence relation for this: knowing
only two of the polynomials (i.e., the vectors), it is possible to construct
the next. This non-trivial idea is incorportated into the computation of the
conjugate gradient process.
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Generating conjugate directions

We will generate two sequences of vectors gi and hi which enjoy the
following properties—

gi · gj = 0, gi · hj = 0, hi · A · hj = 0, for i > j .

Start with some vector g0 and set h0 = g0. Then construct

gi+1 = gi − αiA · hi , hi+1 = gi+1 + βihi .

The orthogonality and conjugacy properties of gi and hi then allow us to
solve for the unknowns—

αi =
gi · hi

hi · A · hi

=
gi · gi

hi · A · hi

, βi =
gi+1 · gi+1

gi · gi

.
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Some problems

Problem 4: Find a set of vectors yi such that one can set
gi = hi = yi and still satisfy the properties

gi · gj = 0, gi · hj = 0, hi · A · hj = 0, for i > j

for symmetric positive definite A.

Problem 5: Given a set of gi and hi satisfying the orthogonality and
conjugacy relations above, is it possible to obtain another mutually
conjugate set h′

i for which gi · h
′

j 6= 0 for all i , j?

Problem 6: Obtain the expressions for αi and βi given above.

Problem 7: Find the time required to obtain the vectors gi+1 and
hi+1 given the gi and hi . Design an efficient parallelization of these
computations.
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The conjugate gradient algorithm

The algorithm is the following: initialize h0 = g0 to be the direction of the
gradient (this choice does not really matter). Minimize along this
direction. Then generate successive hi and minimize along those
directions. Terminate whenever the residual, i.e., the change in the
function value, is within a pre-specified tolerance. (See “Numerical
Recipes” for a more detailed prescription.)

This completes the solution of the optimization problem. Since it is the
same as solving a system of linear equations, it also solves the problem of
the inversion of a matrix. The conjugate directions can be used to easily
construct eigenvectors. Hence this algorithm also solves that problem.
Linear differential equations (including partial differential equations) give
rise to large and sparse matrix problems. Hence this algorithm can also be
used to solve that class of problems.
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