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The old renormalization

We start with a Lagrangian, for example, the 4-Fermi theory:

L =
1

2
ψ/∂ψ − 1

2
mψψ + λ(ψψ)2 + · · ·

Here all the parameters are finite. But anticipating the divergence
of perturbative expansions, we add counter-terms

Lc =
1

2
Aψ/∂ψ − 1

2
Bmψψ + λC (ψψ)2 + · · ·

where A, B , C , etc., are chosen to cancel all divergences in
amplitudes. This gives the renormalized Lagrangian

Lr =
1

2
ψr
/∂ψr −

1

2
mrψrψr + λr (ψrψr )

2 + · · ·

Clearly, ψr = Zψψ where ψr = ψ
√
1 + A, mr = m(1 + B)/(1 + A),

λr = λ(1 + C )/(1 + A)2, etc.. The 4-Fermi theory was called an
unrenormalizable theory since an infinite number of counter-terms
are needed to cancel all the divergences arising from L.
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Perturbation theory: expansion of amplitudes in loops

Any amplitude in a QFT can be expanded in the number of loops.
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Perturbation theory: expansion of amplitudes in loops

Born 1 loop 3 loop
I=1, V=2 I=4, V=4

2 loop 
I=7, V=6 I=10, V=8

Any amplitude in a QFT can be expanded in the number of loops.

L = 1 + I − V
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Perturbation theory: expansion of amplitudes in loops

Born 1 loop 3 loop
I=1, V=2 I=4, V=4

2 loop 
I=7, V=6 I=10, V=8

Any amplitude in a QFT can be expanded in the number of loops.

L = 1 + I − V

Problem 2.1

Prove the equation. Prove that the expansion in loops is an
expansion in ~, so is a semi-classical expansion. The number of
unconstrained momenta is equal to the number of loops, giving an
integral over each loop momenta. (Hint: See section 6.2 of
Quantum Field Theory , by Itzykson and Zuber.)

Sourendu Gupta Effective Field Theories 2014: Lecture 2



Outline Loops EFT Renormalization End

Ultraviolet divergences

Typical loop diagrams give rise to integrals of the form

Imn =

∫

d4k

(2π)4
k2m

(k2 + ℓ2)n

where k is the loop momentum and ℓ may be some function of the
other momenta and the masses. When 2m + 4 ≥ 2n, then the
integral diverges.
This can be regularized by putting an UV cutoff, Λ.

Imn =
Ω4

(2π)4

∫ Λ

0

k2m+3dk

(k2 + ℓ2)n
=

Ω4

(2π)4
ℓ2(m−n)+4F

(

Λ

ℓ

)

,

where Ω4 is the result of doing the angular integration. The cutoff
makes this a completely regular integral. As a result, the last part
of the answer can be obtained entirely by dimensional analysis.
What can we say about the limit Λ → ∞?
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Dimensional regularization

The UV divergences we are worried about can be cured if D < 4.
So, instead of the four-dimensional integral, try to perform an
integral in 4 + δ dimensions, and then take the limit δ → 0−. Since
everything is to be defined by analytic continuation, we will not
worry about the sign of δ until the end.

The integrals of interest are

Imn =

∫

d4k

(2π)4
k2m

(k2 + ℓ2)n
→
∫

d4+δk

µδ(2π)4+δ
(k2δ + k2)m

(k2δ + k2 + ℓ2)n
,

where we have introduced an arbitrary mass scale, µ, in the second
form of the integral in order to keep the dimension of In
unchanged. Also, the square of the 4 + δ dimensional momentum,
k , has been decomposed into its four dimensional part, k2, and the
remainder, k2δ .
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Doing the integral in one step

Usually one does the integral in 4 + δ dimensions in one step:

Imn = µ4−D

∫

dDk

(2π)D
k2m

(k2 + ℓ2)n

= ℓ2m+4−2n

(

ℓ

µ

)D−4 ΩD

(2π)D
Γ(m + D/2)Γ(n −m − D/2)

2Γ(n)
,

where ΩD = Γ(D/2)/(2π)D/2 is the volume of an unit sphere in D

dimensions.

For m = 0 and n = 1, setting D = 4− 2ǫ, the ǫ-dependent terms
become
(

ℓ2

4πµ2

)

−ǫ

Γ(−1 + ǫ) = −1

ǫ
+ γ − 1 + log

[

ℓ2

4πµ2

]

+O(ǫ),

where γ is the Euler-Mascheroni constant.
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Doing the integral in two steps

One can do this integral in two steps, as indicated by the
decomposition given below

I 0n =

∫

d4k

(2π)4
1

(2πµ)δ

∫

dδk

(k2δ + k2 + ℓ2)n
,

Simply by power counting, one knows that the internal integral
should be a k-independent multiple of (k2 + ℓ2)−n+δ/2. In fact,
this is most easily taken care of by the transformation of variables
k2δ = (k2 + ℓ2)x2. This gives

∫

dδk/(2πµ)δ

(k2δ + k2 + ℓ2)n
=

1

(k2 + ℓ2)n

(

k2 + ℓ2

2πµ

)δ

Ωδ

∫

xδ−1dx

(1 + x2)n

where Ωδ is the angular integral in δ dimensions. The last two
factors do not depend on k , the first factor reproduces In, so the
regularization must be due to the second factor.
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Doing the integral in two steps

One can do this integral in two steps, as indicated by the
decomposition given below

I 0n =

∫

d4k

(2π)4
1

(2πµ)δ

∫

dδk

(k2δ + k2 + ℓ2)n
,

Simply by power counting, one knows that the internal integral
should be a k-independent multiple of (k2 + ℓ2)−n+δ/2. In fact,
this is most easily taken care of by the transformation of variables
k2δ = (k2 + ℓ2)x2. This gives

∫

dδk/(2πµ)δ

(k2δ + k2 + ℓ2)n
=

1

(k2 + ℓ2)n

(

k2 + ℓ2

2πµ

)δ

Ωδ

∫

xδ−1dx

(1 + x2)n

where Ωδ is the angular integral in δ dimensions. The last two
factors do not depend on k , the first factor reproduces In, so the
regularization must be due to the second factor.
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Recognizing the regularization

The regulation becomes transparent by writing

(

k2 + ℓ2

2πµ

)δ

= exp

[

δ log

(

k2 + ℓ2

2πµ

)]

.

For fixed µ, the logarithm goes to a constant when k → 0. Also,
the logarithm goes to ∞ when k → ∞. As a result, the factor
goes to zero provided δ < 0. This is exactly the intuition we
started from.

In the context of dimensional regularization, the quantity µ is
called the renormalization scale. We have seen that it gives an
ultraviolet cutoff. The important thing is that the scale µ is
completely arbitrary, and has nothing to do with the range of
applicability of the QFT.
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Review problems: understanding the old renormalization

Problem 2.2: Self-study

Study the proof of renormalizability of QED to see how one identifies all

the divergences which appear at fixed-loop orders, and how it is shown

that taking care of a fixed number of divergences (through

counter-terms) is sufficient to render the perturbation theory finite. The

curing of the divergence requires fitting a small set of parameters in the

theory to experimental data (a choice of which data is to be fitted is

called a renormalization scheme). As a result, the content of a QFT is to

use some experimental data to predict others.

Problem 2.3

Follow the above steps in a 4-Fermi theory and find a 4-loop diagram

which cannot be regularized using the counter-terms shown in Lc . Would

your arguments also go through for a scalar φ4 theory? Unrenormalizable

theories require infinite amount of input data.
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The old renormalization

In 1929, Heisenberg and Pauli wrote down a general formulation
for QFT and noted the problem of infinities in using perturbation
theory. After 1947 the problem was considered solved. The general
outline of the method is the following:

◮ Analyze perturbation theory for the loop integrals which have
ultraviolet divergences.

◮ Regulate these divergences by putting an ultraviolet cutoff in
some consistent way.

◮ Identify the independent sources of divergences, and add to
the Lagrangian counter-terms which precisely cancel these
divergences.

◮ QFTs are called renormalizable if there are a finite number of
counter-terms needed to render perturbation theory useful.

◮ Use only renormalizable Lagrangians as models for physical
phenomena.
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Unrenormalizable terms

In this view, the unrenormalizable Lagrangian

Lint = −λ(ψψ)2,
was deemed impossible as a model for physical phenomena, since it
needs an infinite number of counter-terms.

q

k k

Examine its contribution to the fermion mass:

imλ

∫

d4q

(2π)4
1

q2 −m2
∝ λmΛ2,

where the integral is regulated by cutting it off at the scale Λ. At
higher loop orders the dependence on Λ would be even stronger. In
the modern view, this analysis is mistaken because it confuses two
different things.
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Unrenormalizable terms

In this view, the unrenormalizable Lagrangian

Lint = −λ(ψψ)2,
was deemed impossible as a model for physical phenomena, since it
needs an infinite number of counter-terms.

q

k k

k k

    + 1 − log(4  )γ1
ε − π

Examine its contribution to the fermion mass:

imλ

∫

d4q

(2π)4
1

q2 −m2
∝ λmΛ2,

where the integral is regulated by cutting it off at the scale Λ. At
higher loop orders the dependence on Λ would be even stronger. In
the modern view, this analysis is mistaken because it confuses two
different things.
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Irrelevant terms

Today the same Lagrangian is written as

Lint = − c6

Λ2
(ψψ)2,

where Λ is interpreted as a scale below which one should apply the
theory.
The contribution to the mass is

imc6

Λ2

∫

d4q

(2π)4
1

q2 −m2
=

c6m
3

16π2Λ2

(

−1

ǫ
+ γ − 1 + log

[

m2

4πµ2

])

,

where the integral is regulated by doing it in 4− 2ǫ dimensions. In
the MS renormalization scheme the counter-term subtracts the
pole and the finite parts γ − 1− log 4π, leaving

δm

m
=

c6

16π2

(m

Λ

)2
log

[

m2

µ2

]

.
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Separation of scales

The cutoff scale in the problem, Λ, is dissociated from the
renormalization scale, µ, in dimensional regularization. This is not
true in cutoff regularization. This separation of scales allows us to
recognize two things:

◮ There is no divergence in the limit Λ → ∞; instead the
coupling becomes irrelevant. The theory remains predictive,
because the effect of these terms is bounded.

◮ There are no large logarithms such as log(m/Λ). The
amplitudes, computed to all orders are independent of µ,
although fixed loop orders are not. In practical fixed
loop-order computations, it is possible to choose µ ≃ m, and
reduce the dependence on this spurious scale.

Regularization schemes which do this are called mass-independent
regularization. They are a crucial technical step in the new
Wilsonian way of thinking about renormalization.
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Is cutoff regularization wrong?

All regularizations must give the same results when the
perturbation theory is done to all orders. Cutoff regularization is
just more cumbersome.

Cutoff regularization retains all the problems of the old view: since
the cutoff and renormalization scales are not separated, higher
dimensional counter-terms are needed to cancel the worsening
divergences at higher loop orders. When all is computed and
cancelled, the m2/Λ2 and log(m/Λ) emerge.

In mass-independent regularization schemes, higher dimensional
terms give smaller corrections because of larger powers of m/Λ.

In a renormalizable theory, since the number of counter-terms is
finite and small, the equivalence of different regularizations is
easier to see.

Sourendu Gupta Effective Field Theories 2014: Lecture 2



Outline Loops EFT Renormalization End RG flow Wilson RG Example QFT

Outline

Outline

Spurious divergences in Quantum Field Theory

Wilsonian Effective Field Theories

Wilsonian renormalization
The renormalization group
The Wilsonian point of view
RG for an Euclidean field theory in D = 0
Defining QFT without perturbation theory

End matter

Sourendu Gupta Effective Field Theories 2014: Lecture 2



Outline Loops EFT Renormalization End RG flow Wilson RG Example QFT

The physical content of renormalization

Wilson fixed his attention on the quantum field theory which
emerges as the cutoff Λ is pushed to infinity while the low-energy
physics is held fixed. According to him, one should define a
renormalization group (RG) transformation as the following—

1. Integrate the momenta over [ζ, ζΛ], and perform a
wave-function renormalization by scaling the field to the same
range as the original fields. This changes Λ → ζΛ.

2. Find the Hamiltonian of the coarse grained field which
reproduces the dynamics of the original system. The couplings
in the Hamiltonians “flow” g(Λ) → g(ζΛ). This flow defines
the Callan-Symanzik beta-function

β(g) =
∂g

∂ζ
.

A fixed point of the RG has β(g) = 0.
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Linearized Renormalization Group transformation

Assume that there are multiple couplings Gi with beta-functions
Bi . At the fixed point the values are G ∗

i . Define gi = Gi − G ∗

i .
Then,

βi (G1,G2, · · · ) =
∑

j

Bijgj +O(g2).

Diagonalize the matrix B whose elements are Bij . In cases of
interest the eigenvalues, y , turn out to be real. Under an RG
transformation by a scaling factor ζ an eigenvector of B scales as
v → ζyv

Eigenvectors corresponding to negative eigenvalues scale away to
zero under RG, and so correspond to super-renormalizable
couplings. We have already set up the correspondence of these
with relevant couplings. For positive eigenvalues, we find
un-renormalizable couplings, i.e., irrelevant couplings. Those with
zero eigenvalues are the marginal operators.
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Understanding the beta-function

We examine the β-function in a model field theory with a single
coupling g . If the β-function is computed in perturbation theory
then we know its behaviour only near g = 0. But imagine that we
know it at all g .

The solution of the Callan-Symanzik equation gives us a running
coupling, obtained by inverting the equation

ζ =

∫ g(ζ)

0

dg

β(g)
.

This happens since the coupling which gives a fixed physics can
change as we change the cutoff scale.

Since larger ζ means that we can examine larger momenta, the
behaviour of g(ζ) at large ζ tells us about high-energy scattering.
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The behaviour of model field theories

β (g)

g

a: asymptotically unfree

b: walking

d: asymptotically free

c: non−perturbative FP
g*
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Enumerating the cases

1. Asymptotically unfree: if β(g) grows sufficiently fast, then the
integral converges. This means that the upper limit of the
integral can be pushed to infinity with ζ finite. This happens
with the one-loop expression for QED and scalar theory.

2. Walking theories: if β(g) grows slowly enough, then the
integral does not converge. As a result, g(ζ) grows very
slowly as ζ → ∞.

3. Non-perturbative fixed point: there is a new fixed point at g∗.
The scaling dimensions of the fields may be very different here.

4. Asymptotic freedom: if β(g) < 0 near g = 0, then, the
coupling comes closer to g = 0 as ζ → ∞. There is no special
significance to β(g) changing sign at some g∗, except that it
means that for all couplings below g∗, the renormalized theory
is asymptotically free.

Sourendu Gupta Effective Field Theories 2014: Lecture 2



Outline Loops EFT Renormalization End RG flow Wilson RG Example QFT

Wilson’s change of perspective

In a QFT we want to compute amplitudes with bounded errors,
and to systematically improve the error bounds, if required. With
just a small change in the point of view, Wilsonian renormalization
gives a new non-perturbative computing technique.

If we need amplitudes at a low momentum scale, then we can use
the RG to systematically lower the cutoff scale, by integrating over
the range [Λ/ζ,Λ]. This corresponds to coarse graining the fields
and examining the long-distance behaviour of the theory. Now the
couplings follow the changed equation

∂g

∂ζ
= −β(g).

Asymptotically unfree theories may be perturbative at long
distances; while asymptotically free theories may become highly
non-perturbative if the corresponding beta-function crosses zero at
some g∗=0.
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Renormalization Group trajectories

ξ = Λ/m. Fixed points: ξ = 0 (stable) or ξ = ∞ (unstable).
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Renormalization Group trajectories

relevant

irrelevant

irrelevant

irrelevant

ξ = Λ/m. Fixed points: ξ = 0 (stable) or ξ = ∞ (unstable).
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Renormalization Group trajectories

ξ = Λ/m. Fixed points: ξ = 0 (stable) or ξ = ∞ (unstable).
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Renormalization Group trajectories

ξ = Λ/m. Fixed points: ξ = 0 (stable) or ξ = ∞ (unstable).

Sourendu Gupta Effective Field Theories 2014: Lecture 2



Outline Loops EFT Renormalization End RG flow Wilson RG Example QFT

Renormalization Group trajectories

critical surface

8(ξ=  )

ξ = Λ/m. Fixed points: ξ = 0 (stable) or ξ = ∞ (unstable).
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Renormalization Group trajectories

critical surface

8(ξ=  )

physical trajectory

ξ = Λ/m. Fixed points: ξ = 0 (stable) or ξ = ∞ (unstable).
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Renormalization Group trajectories

critical surface

8(ξ=  )

ξ = Λ/m. Fixed points: ξ = 0 (stable) or ξ = ∞ (unstable).
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Probability theory as a trivial field theory

Consider a random variate x with a probability density P(x). In
the commonest applications x is real. One needs to compute

〈f 〉 =
∫

∞

−∞

dx f (x)P(x), where 〈1〉 = 1.

Since P(x) ≥ 0, one finds S(x) = − lnP(x) is real.
Define the characteristic function, Z [j ] and cumulants

Z (j) =

∫

∞

−∞

dxe−S(x)−jx , and [xn] =
∂nF (j)

∂jn

∣

∣

∣

∣

j=0

,

where the generating function: F [j ] = − logZ [j ]. Note the analogy
of S(x) with the action of a zero dimensional field theory, of Z (j)
with the path integral and F (j) with the generating function for
the correlators. The cumulants, [xn], and are just connected parts
of n-point functions of the field x . The connection between the
cumulants, [xn] and the moments, 〈xn〉, is left as an exercise in
Mathematica.
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Setting up the RG

Now suppose we take m of the random variates and average them,
then what are the cumulants of the distribution of

ym =
1

m

m
∑

i=1

xi?

This is an RG. The sum over many random variates corresponds to
taking low-frequency modes of quantum fields, and m corresponds
to Λ.

Clearly,

Zm(j) =

∫

{

m
∏

i=1

dxiP(xi )

}

e
−jyδ

(

y − 1

m

m
∑

i=1

xi

)

=

[

Z

(

j

m

)]m

.

So the RG gives us Fm(j) = mF (j/m).
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The central limit theorem

Since the cumulants are Taylor coefficients of the generating
function, one has

F (j) =
∞
∑

n=1

[xn]
jn

n!
,

and similarly for Fm(j). Then comparing the coefficients of jn gives
the RG flow

[yn] =
1

mn−1
[xn].

This procedure corresponds to matching the “low-momentum”
correlation function.

The mean is unchanged by the RG, and the variance scales as
1/m. All the higher cumulants scale by successively higher powers
of m, and can be neglected if m is large enough. The RG flow
proves the central limit theorem: the fixed point of probability
distributions under RG is the Gaussian distribution.
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Perturbation theory is insufficient

◮ The β-function of QED, obtained at 1-loop order, is positive
and grows so fast that the running coupling becomes infinite
at finite energy: this is called the Landau pole. As a result,
QED does not work at high energy.

◮ The 1-loop effective action for non-Abelian gauge fields is
minimized at a finite constant field strength [Savvidy: 1977].
In such a background, the gauge fields have an instability
[Nielsen, Olesen: 1978]. So a perturbative expansion around
this does not work.

◮ There are arguments which lead us to believe that the
Euclidean path integral of a non-Abelian gauge theory is not
dominated by a minimum of the classical action [Pagels,
Tomboulis: 1978]. As a result a perturbative expansion
around the quantum ground state cannot work.
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What is quantum field theory?

The quantum theory of fixed number of particles can be solved in
many different ways. Perturbation theory is only one of these.

The older view of renormalization tied the definition of a quantum
field theory completely to the perturbation expansion. But since
perturbation theory is insufficient, it became necessary to develop a
definition, i.e., a computational method, for quantum field theory
independent of the perturbation expansion.

The Wilsonian view of renormalization yields a new way of defining
computational techniques for quantum field theory: the method of
effective field theory. These can be treated in perturbation theory
(as in this course). Or one can treat it exactly by creating a Wilson
flow in the space of Lagrangians, as in lattice field theory.
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A space-time lattice

If a Green’s function has an UV divergence, then that means that
the product of field operators separated by short distances diverges.
An UV cutoff means that the shortest distances are not allowed.

A simple way to implement this is to put fields on a space-time
lattice. If the lattice spacing is a, then this corresponds to an UV
cutoff, Λ ≃ 1/a. Derivative operators are simple:

∂µφ(x) =
1

a
[φ(x + aµ̂)− φ(x)] .

The discretization of the derivative operator is not unique; there
are others which differ by higher powers of a. This means that the
difference between different definitions of the derivative are
irrelevant operators.
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The reciprocal lattice: momenta

Making a lattice in space-time means putting an upper bound to
the momenta. It is also possible to make an infrared (IR) cutoff by
putting the field theory in a finite box. If the box size is L = Na,
and one puts periodic boundary conditions, then only the momenta
2πn/(Na) are allowed. The spacing between allowed momenta is
2π/(Na), the lowest momentum possible is 0, and the highest
possible momentum is 2π(N − 1)/(Na). This range is called the
Brillouin zone.

Fourier transforms of fields become discrete Fourier series, and
momentum integrals become computable sums.

Problem 2.4

Explicitly construct the Fourier transforms of scalar and Dirac
fields with periodic and anti-periodic boundary conditions on a
hypercubic lattice in 4-dimensions of size N4.
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Pure Higgs theory

Take the scalar field theory in Euclidean space-time:

S =

∫

d4x

[

1

2
∂µφ∂

µφ− 1

2
m2φ2 + λφ4

]

, (m, λ > 0),

and put it on a space-time lattice. The discretisation of the
derivative in the kinetic term gives products of fields at
neighbouring lattice sites. Everything else becomes an on-site
interaction of the fields. If we take λ→ ∞, then the fields are
pinned to the minimum of the potential. We can render the fields
dimensionless using the lattice spacing a, and scale the field value
at the minimum of the potential to ±1. Then the scalar field
theory reduces to

S =
∑

x ,µ

sxsx+µ̂, (sj = ±1),

which is the Ising model. (Problem 2.5: Complete this
construction.)
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