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1 Thermodynamics

Thermodynamics deals with isolated systems of macroscopic dimensions.
Typical macroscopic systems contain about 10** particles. The systems
are isolated from their surroundings in that the input of any form of en-
ergy to them is totally controlled. Thermodynamics is concerned with the
behaviour and inter-relations of a set of extensive variables, such as the
molar volume, V', of a fluid, the total internal energy, U, of a system, or
the total magnetisation, M, of a metal. These variables are called exten-
sive because they depend linearly on the amount of material being studied.
All other factors remaining the same, if we double the number of molecules
in the system, all these quantities double. The number of such extensive
variables is very much smaller than the number of microscopic degrees of
freedom. We shall carry over into thermodynamics the notion of an equi-
librium state as one in which the energy is at its minimum, for fixed values
of every other extensive variable. The thermodynamical state of any system
is the specification of all the extensive quantities that characterise such an
isolated macroscopic system in equilibrium.

The first law of thermodynamics codifies the result of Joule’s experi-
ments on the interconvertibility of heat, (), and forms of mechanical energy—

dU = 6Q + F - dX, (1)

where each X; stands for an extensive quantity and F; for a “force”. If one
of the X; is V, then the corresponding F; = —P (where P is the pressure in
equilibrium). The change in mechanical energy is just F - dX. The internal
energy differs from this mechanical energy by taking into account the heat.
Note that U, P and V are all functions of state, i.e., they depend only



on the thermodynamical states of the system, and not, for example, on its
previous history. However, () is not a state function. The value of every
state function, X;, can be measured— either directly, or by the work done
in changing the state. This gives unambiguous results, because the work put
into the system to change X; can be extracted out of it by letting x; revert
back to its old value in a controlled way. While the amount of heat added
to a system, () can also be measured, the notion of a total heat content of
a system turns out to be meaningless.

Reversible changes of a system are those in which the system always
remains in equilibrium, and hence can be described by thermodynamics while
it changes. Usually this means changing the system very slowly, i.e., in a
quasi-static manner. An adiabatic change in a system is one in which no heat
is added or removed from the system; in other words, an adiabatic change
happens to a thermally isolated system. Irreversible changes lie outside the
scope of thermodynamics.

The second law of thermodynamics postulates the existence of a new
extensive state variable— the entropy, S, which is an increasing function of
U. The law states that in an adiabatic change in the state of a system, the
entropy always increases—

dS(adiabatic) > 0. (2)

Almost all thermodynamical identities follow from these two laws and the
notions that surround them. In the remainder of this lecture, we shall restate
these notions in a way that allows us to deal in a very straight-forward manner
with phase transition.

A word about units. The first law tells us that heat is measured in
units of energy. If we take the entropy to be dimensionless, then 6Q) = T'dS
codifies the view that temperature is also to be measured in energy units.
Boltzmann’s constant, k, is then dimensionless and set equal to unity. If
historical relics, such as the Kelvin scale, make an appearance then it is a
simple matter to reinstate k£ = 1.380 658 (12) x 10~2* J/K.

2 A Geometrical View

The space of all extensive variables, including the entropy, is called the Gibbs
space. Thermodynamics is the study of relationships and movements of a
system in Gibbs space. The equilibrium states of a system correspond to

Why?



Figure 1: A three dimensional Gibbs space. The curved surface shown is a
possible section of the entropy surface.

those of maximum entropy for given values of other extensive variables. Each
equilibrium state thus corresponds to a point on the hypersurface S(X) called
the entropy surface. The coupling conjugate to X; is defined to be

0S

Ki - .
0X,;

(3)

For example, the coupling = 1/T = Ky.
An entropy surface must satisfy the properties

1. Continuity: The couplings, K;, are continuous over the surface.

2. Stability: The surface is convex, i.e., lies entirely below the tangent
plane drawn anywhere on the surface. This implies that §2S/0X? < 0
everywhere on the surface.

The whole entropy surface may not be physical. Extra conditions govern
the physical region of Gibbs space: for example, the condition that 7" > 0



is necessary to impose the condition that S increases with U. This repre-
sentation, S(X), of the stable states of the system is called the entropy
representation.

An alternative representation of the same geometry is called the energy
representation. It is obtained by describing the surface of stable states by
the functional dependence of the internal energy, U, on the rest of the exten-
sive variables, including S. This is just a change of variables from S(U, X)
to U(S, X); the entropy surface remains the same in the two representations.

The intensive variables are defined, analogous to the couplings, through

ou
oX. (4)
It is also customary to define the response functions
dX; U\
Xi = = 3%z ] - (5)

The stability condition now leads to the more familiar statement that the
energy is at a minimum. This also implies that the surface is everywhere
above any tangent plane, i.e., 9?U/0X? > 0, globally. This further leads to
the usual form of the stability conditions, x; > 0.

Example 1.1 (A single component fluid) The Gibbs space is three di-
mensional, consisting of S, U and the molar volume, V. The two dimensional
entropy surface is given by a relation S(U, V). In the energy representation
the same surface has the description U(S, V). The familiar intensive vari-
ables, the temperature T" and the pressure P are given by

ouU 1
T = Kg= —| =_—
T 85, Ky
oU dS a8 Ky
P = —Ky——-| =22 = =
v v | 8VV/8UU Ky’ (6)

and are seen to have a simpler form in the energy representation. The sta-
bility condition on the specific heat at constant volume, Cy, is obtained as

2
ou >0 since 0> o5 = (9(81(/]T) - i 3_T (7)

“=7ar|, 7 = U2 T2 U

v 1% 1%
Given that T > 0, it is continuous over the entropy surface, and the surface

is convex, the entropy of a fluid increases with T

4



Do we have everything we need? By assuming 7' > 0 we have ensured that
the entropy increases with U. Reversible changes move along the entropy
surface. Equilibrium states are stable. What about the second law? By
definition we have

Now, for adiabatic changes, ) = 0 and dS > 0, which implies that f; >
-K;.

Problem set 1.1
1. Check that the form S(U,V) = logUV gives an admissible entropy
surface. Show that PV =T =U.

2. From all the definitions encountered till now, show that for reversible
processes of a single component fluid, dE = T'dS — PdV.

3. A rubber band is stretched by a weight hanging from it. The Gibbs
space is three dimensional— {S,U, L}, where L is the length of the
band. What are the intensive quantities? What are the stability con-
ditions? What are their physical interpretations?

4. Amphipathic molecules, such as the active ingredients in soaps, have
a polar head and a non-polar tail. When added to water, they form
globules with all the polar heads sticking out and the tails tucked in
together. These structures are called micelles. The Gibbs space is
three dimensional— {S,U, N}, where N is the number of moles of the
amphipathic molecule per unit mole of water. What are the intensive
quantities? What are the stability conditions? What are their physical
interpretations?

5. For some system, if U” and U" vanish for some X, then what are the
stability conditions? (Primes denote derivatives with respect to X.)

6. For a ferromagnetic solid with bulk magnetisation M, what is the di-
mension of Gibbs space? What are intensive quantities, the stability
conditions, and their physical significance?
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7. In the three dimensional Gibbs space of a single component fluid, draw
an admissible entropy surface. Show the paths corresponding to re-
versible and adiabatic changes. Also show the path corresponding to a
Carnot cycle.

8. If

oU
Cr=7r
ar |,

then show that C», > Cy.. Apart from the proof, give a simple physical
argument why this should be so.

Figure 2: At each X, all three curves have the same derivative, Y'. They
are distinguished by the intersection of the tangent with the Y axis. The
Legendre transform is the function which specifies how this intersection point
varies with the slope.

Since the surface U(S, X) is globally convex, each tangent touches it at
one point and cannot intersect it elsewhere. As a result, each point on the
surface has an unique value of the intensive variables K;. It would then seem
possible to describe the entropy surface entirely in terms of the K;. However



this is wrong. The entropy surface cannot be obtained by only specifying
its derivatives, since such a specification will generate all rigid translations
of the surface. Instead, the surface has to be specified by its derivatives at
all points and the intersection of the tangent plane with the U axis. Such a
description is called a Legendre transform. Consider the tangent plane to
Uat X° ie, T(X;X%) =U(X"+ 3, K;(X; — X?). It’s intercept on the U
axis is given by

T(K;) =U(X°) - Z K; X}, (9)

After elimination of U(Xj) and X; through the definition of the function and
its derivatives, this defines the Legendre transform. We can also transform
only a subset of the extensive variables. Convexity of U(X) implies convexity
of T(K).

Legendre transforms of U with respect to subsets of K; are called free
energies. The familiar Helmholtz free energy is the transform F =
U —TS. The enthalpy H = U — PV. The Gibbs’ free energy is the
full transform G = U —T'S — PV. The convexity of U leads to the familiar
condition that equilibrium states minimize free energy.

The Maxwell’s relations give the equality of mixed derivatives for

the energy surface or its Legendre transforms. For example, starting from
U(S,V), we obtain

0 <8U> 0 <8U> . . oT
implying ——

9 (oUY\ 9 (oU 0P
ov\os) a5 \ov oV

T (10)

v
Three other relations may be obtained for simple fluids. In Gibbs spaces of
higher dimensions further relations are obtained.

Problem set 1.2
1. Show that the following functions f(z) have the Legendre transforms
g(y) shown, where, in each case, y = f'(x).

(a) f(z) = z™" and g(y)  |y|'*'/", and hence, g(y) has a cusp for
n > 1.

(b) f(z) =expz, and g(y) = y(1 — logy).
(c) f(z)=-1/(1+ ), and g(y) =y — 2\/¥.

Prove!



For an entropy surface S(X), and the plane Sp(X; X?) tangent to it at
X9 we have the relation

S(X°+2) = Sp(X° +2;X°) + s(2) (x — 0) (11)

where s(z) < 0 and both s and s’ vanish at z = 0. At a generic point, since S
has a Taylor expansion with a non-vanishing second deriative, s(z) decreases
quadratically. The special points where s(z) is non-quadratic, thermody-
namic stability is achieved in different ways. These points are called phase
transition points. We shall deal with them next.

3 Phase Transitions: 2-d Gibbs Spaces.

An old thermodynamic definition of orders of phase transitions is known as
Ehrenfest’s classification. According to this, if some extensive variable
X has a discontinuity as the conjugate intensive variable, K, is tuned, then
a first order phase transition is said to occur. If X is continuous but
the derivative X /0K is infinite, then a second order phase transition
is deemed to have occurred. Sometimes this is extended to (n + 1)-th order
phase transitions when (n — 1) partial derivatives of X (with respect to K)
are continuous but the n-th has a discontinuity or is infinite. In order to
develop ideas in simple concrete situations, we now deal with a two dimen-
sional section of the Gibbs space, passing through the entropy axis. The
perpendicular direction we call X.

It is possible for a function 3(X) to satisfy the condition on the continuity
of the derivative K = ¥'(X), while violating that on the stability. In this case
an acceptable entropy function, S(X), is generated by taking the outermost
envelope of the tangent lines to 3(X). If we imagine constructing S(X) by
rolling a line over Y, then this line bridges over re-entrant portions of the
surface. Thus the entropy function has a portion which is precisely flat. This
describes a region of two-phase mixtures, or first order phase transitions.

In this two-phase region every tangent line makes contact with the surface
Y at two points, P_ and P,. The line joining these two points is a generator
of the surface. Along any such line, the system is a mixture of the two pure
phases achieved at P_ and P,, and is specified by the fraction f of one of
these states. The value of any extensive variable, X, along the generator is



Figure 3: A globally convex function can be formed from the non-convex
curve shown by rolling a straight line over it. This is the generic situation at
a first order phase transition.

given by X (f) = fX_ + (1 — f)X,. The distribution of X over subsystems
is not peaked at X(f) but at the two pure phase values X  and X,. There
is no restoring force for disturbances of the system along the generator. Such
a disturbance merely changes f, i.e., increases the amount of one phase as
the expense of the other.

Example 1.2 (Ginzburg-Landau form) Consider, the explicit form X(X)
—(X?% —1)?2 — BX. Then, the globally convex entropy is

—(X*-1)*-BX for | X| > 1,

S(X) = {—BX for |X| < 1. (12)

The coupling K = S'(X) is continuous, and equal to the constant —B in
the region —1 < X < 1. The second derivative S”(X) < 0 everywhere. For
—1 < X < 1, § is flat. This region corresponds to a mixture of the pure
phases obtained at X =1 and X = —1, with S, = Band S = —B. If a
system has fraction f of the first phase, then S(f) = Sy + (1 — f)S_.

Such a definition of a first order phase transition is equivalent to Ehren-
fest’s classification. The coupling, K = K*, is constant over the two phase
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region, and hence does not specify the thermodynamic state completely. S
considered as a function of K has a jump at K*. The same consideration Show!
applies in the energy representation, and further leads to the condition that
the Legendre transform, the free energy F', is equal for the two phases and
everywhere in the two-phase region.

Next consider a function, S(X), which has slower than quadratic contact
with the tangent line at a point X°. Then the system undergoes a second
order phase transition at this point. Disturbances of the system lead
to unbounded fluctuations, and hence the system is called critical. The
deviation from the tangent line, s(z) ~ z'*". In general, n is not a number,
since s(z) may be non-analytic at = 0. For such cases we may write
n = n(z). The deviation function for the Legendre transform is of the form
k|17 where k is the distance from the point of tangency K°. Thus,
the Legendre transform is regular if and only if n = 1. Also, the response
function y = dz/dk oc k'/"~!, and hence, for n > 1, goes to infinity as k goes
to zero, as a power of k. This power is called a critical exponent. Clearly,
this situation corresponds to a second order phase transition in Ehrenfest’s
classification.

4 Homogeneous Functions, Critical Indices

If X is some extensive variable, and the corresponding density is z, with
a thermodynamic expectation value Z, then we can define the correlation
function between fluctuations as

C(r) = ((z(r) —7)(x(0) — 7). (13)

Here z(r) is the value of z in a volume around the point r which is much
larger than any microscopic length scale, but much smaller than the system
size. In general, the asymptotic fall-off of C'(r) defines a correlation length,
&, through the relation

lim C(r) = exp(—r/¢). (14)

At a critical point £ diverges and the correlations are unbounded. The
critical point is reached by tuning all the intensive variables of the problem to
their critical values. For example, in one-component fluids, a critical point
is specified by the critical temperature, T,, and the critical pressure, P..
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In ferromagnetic systems, the temperature and the external magnetic field
must be tuned to their critical values, T, and H, respectively. In this case,
symmetry conditions imply H, = 0.

At P, (or H,.) the divergence of the correlation length

e

ET -1 (T <T.) (15)

defines two critical exponents v and /. They need not be equal. Precisely
at the critical point, the correlation function has the form

C(r) ~ |r>~*, (16)

where 7 is yet another critical index. The indices v and n are related to
fluctuations in equilibrium.

Since the free energy has a singular part at the critical point, response
functions diverge here. At P, (or H,) the singular part of the specific heat
diverges as

AT - T, |~ (T >T,)
Cv ~ {A|T — T, (T < T.). (17)

These define the exponents o and o’. Similiarly the inverse bulk compress-

ibility also diverges at P., and the magnetic susceptibility at H.. These give
two new exponents

AT - T, | (T >T.)

X {A_|T—TC|V' (T < T,). (18)

Again, the exponents on the two sides of the critical point need not be equal.

In both these examples two phases coexist for T' < T.. For the fluid, the
difference of the molar volumes from the critical value, V,, for each of the
two pure phases (say, gas and liquid) as a function of 7' defines two more
critical exponents

(T, —T)? (liquid phase)

(T. —T)” (gas phase). (19)

Vv ~ {
The magnetic case is simplified by symmetry. The critical value of the spon-

taneous magnetisation, M, = 0. Furthermore, the two phases have equal and
opposite magnetisations. As a result, 5 = (.
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The coexistence curves are also described by other exponents. In the
magnetic case this exponent describes the vanishing of M at T, with the
applied magnetic field H. Thus,

M ~ HYS.  (T=T,) (20)

In the fluid case, one may describe the variation of |V —V,|, in the two phases,
by two exponents d and ¢, not necessarily equal.

These exponents are not all independent. With the hypothesis that the
internal energy is a homogeneous function of the other extensive variables
near a critical point, many relations between them can be obtained. We
defer the derivation of such relations to the next section, and end this with
some theorems on homogeneous functions.

Theorem 1.1 (Power law behaviour of homogeneous functions)
If F(x) is a homogeneous function of x of degree n, then F(z) o z".

Proof: By definition, F(Az) = A"F(z). Taking y = Az at fixed =, we have
dF(y)/dy = nA\""'F(x)/x. Dividing both sides of this equality by F(y), we

get
dy Y

This has the solution F(y) o< y™. I

Theorem 1.2 (Euler’s theorem)
If F' is a generalised homogeneous function of n variables such that

F(A“ 2, A 229, --+) = AVF (2,29, --), (22)

then " F
NF(Z’l,IQ,"') = Zal—xl (23)

i1 aCEZ

Proof: Writing F)\ = F(A"x1,\"2z,,---), and F = F(z1,xs,--), we have

dF\  ~d\% OF,
o Z X\ " om; (24)

Also dFy/d\ = NAN"'F. Hence, putting A = 1, the theorem follows. |
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Theorem 1.3 (Factorisation of homogeneous functions)
If F' is a generalised homogeneous function of n variables such that

F()\alilfl,Aa2£l?2,"') = )\NF(JZ'I,ZEQ,"'), (25)
then F' can be written in the factorised form
F(z1,20,+) = o3/ G(z/25/™, ). (26)

Proof: Choose \ = x}/al. The theorem follows. I

Euler’s theorem has an application not connected with phase transitions.
In the energy representation, U(X), since both U and X are extensive, and
scale linearly with the amount of material, we have U(AX) = AU(X). Then
Euler’s theorem leads to the Gibbs-Duhem relation

U=KX,. which gives U=TS — PV, (27)

for a single component fluid.

5 Phase Transitions: The General Case.

We return to the geometric description of phase transitions, now working
in Gibbs spaces of larger than two dimensions. Given a primitive entropy
surface (X ), which may obey the continuity condition but violate that on
stability, we can proceed as before to construct a globally convex entropy
function S(X) by taking the outermost envelope of the tangent hypersur-
faces to . As before, re-entrant portions of 3 are bridged by planar sections,
leading to a description of multi-phase coexistence. However, more compli-
cated situations may arise in these higher dimensional cases. We classify the
phenomena here.

The two-phase region of an entropy surface consists of a ruled surface.
The generators of such a surface are straight lines joining two pure-phase
points, also called seperation points. The locus of the two ends of the
generators trace out a pair of lines called the coexistence curve. There are
three topologies available to these curves—

1. They terminate at the limit of some physical property, e.g., at T'= 0.

2. The two curves intersect at a critical point. The direction of the limiting
generator at this point defines the order parameter.
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phase A critical point

triple point

phase B

Figure 4: Possible phase diagram of a single component fluid illustrates var-
ious definitions.

3. More than two curves intersect at multicritical points. This phe-
nomenon can only occur in Gibbs spaces of three or more dimensions.

The image of the entropy surface in the plane of two independent intensive
variables is called a phase diagram. The image of a phase coexistence
region on the phase diagram is a line called the transition line. Such a line
ends at a critical point (see Figure 4).

Example 1.3 (Ginzburg-Landau energy) Consider the entropy surface
given in the energy representation by

U = {4 T ) )

The primitive function U(z,y) = Az? + (z + y*)? is re-entrant between the
coexistence curves

y = +v 7, (x <0). (29)

Hence, U(x,y) contains a ruled surface in this region corresponding to two
phase coexistence. The origin is a critical point. The generators are the
lines of constant (negative) z, and the order parameter is the line z = 0, i.e.,
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the y-axis. The phase diagram is the plane corresponding to the intensive
couplings

p = { ;Ei;F A)x + 2y2 qg = {Bly(x + yQ) (30)

In this plane the transition line is given by ¢ = 0, ending in the critical point
p=q=0.

Recall that each point in the space of intensive parameters corresponds
to a tangent to the entropy surface. Hence the generators of the two-phase
region correspond to the intersection of two almost parallel tangents. The
directions of the generators are given in terms of first derivatives along the
transition line. Such a relation is called the Clausius-Clapeyron equation.

Example 1.4 (One component fluid) Since the Gibbs’ free energy in the
two pure phases are equal at the two ends of a generator, G (T,P) =
G_(T, P). Hence, under infinitesimal changes of T" and P, we obtain dG, =

dG . This gives —S,dT + V,dP = —S dI'+ V_dP, and therefore,
dP AS
FNG (31)

The derivative is the slope of the transition line in the phase diagram. AS and
AV are the differences between the pure phase values of these quantities along
a generator. The Clausius-Clapeyron equation above gives the direction of
the generator in terms of these quantities.

We now examine the relations between the critical exponents «, 3, v and

0. It turns out to be useful to set up some shorthand notation. First we

define the deviation between a function, F', and the surface Fr tangent to it
at X0

F(X°+z) = Fr(X°+2; X°) + f(2). (32)

The deviation function f(z) and its derivatives are zero at z = 0. This
corresponds to a shift in the origin. The same shift can be simultaneously
applied to the Legendre transform.

In the following discussion we shall follow the conventions that

1. The Gibbs space has dimension 3, unless otherwise stated.
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2. We shall work in the energy representation and use the deviation func-
tion u(z,y). This is sufficient unless the energy itself is the order pa-
rameter. We name the intensive variable t and h. They are defined as
t=u, and h = u,.

3. The critical point is at the origin, i.e., x, = y. = 0.

4. The Legendre transform of the internal energy, g(t, h), is also shifted so
that the critical point is at the origin of the phase diagram, ¢, = h. = 0.
Thus, derivatives of u vanish at the critical point.

5. The y-axis is the direction of the order parameter.

6. The order parameter is a symmetry direction, so that u(z,y) = u(z, —y)
and g(ta h) = g(ta 7h)

7. The two phase region occurs for x < 0.
8. u(x,y) is regular except at the origin and in the two-phase region.

9. uy, = 0 at the origin. Thus, the energy surface is anomalously flat at
the critical point in the direction of the order parameter. This includes
the case of both a power-law behaviour u ~ y* and a logarithmic
singularity u ~ y*/log |y|.

Now we discuss in detail the case of a scaling form for the energy func-
tion u(x,y). Assume that near the origin u ~ x'™@ for constant y, and
u ~ y'* for constant z. By the requirement (8) at least one of a and § is
greater than unity. The requirement (9) specifies that § > 1. Using Euler’s
theorem we can write

where z = —— .
ly'"u_(2)  (y<0) y|h l+a

(33)
The functions u, (z) and u_(z) are regular and non-zero near z = 0. Then,
with uy(0) = ug, we find that

1446
u(z,y) = {y s (2) (y>0) ? and h = 1+90

y = (uph)'?. (34)

Hence, 0 is precisely the critical exponent defined in eq. (20). A similiar
argument can be given for ¢’ in terms of u_.
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The behaviour of v, and u_ are also constrained for z — oo. The analysis
is made simpler by writing b = 1/h and

S £
_ )z (2 <0,y <y < Yo oy
DT ) <0y where 2 = 15,
[T (z) (2 < 0,50 <y)
(35)

Here y.(z) and y.(x) denote the coexistence curves, and enclose the two-

phase region. Both ¢, and ¢_ are non-zero and regular near the origin.

Hence, along the line y = 0, the definition ¢ = u, yields the relation z o t'/¢.
Since C, o 1/ug,, we find

1
=1--. 36
«=1-- (36)

Similarly, using the definition x o 1/u,, and a Taylor series expansion of ¢
and ¢_, we find
l1+a)(0—1
_(+a6-1 -
a(l+9)
The coexistence curve y.(z) is given by the matching condition ¢(z.) =
¢—(2.). Given the solution z., we find that

Yo = zc|x|b ~ the, (38)

This immediately gives the remaining exponent

1+a

ST}

(39)
A similiar analysis with 1)’ gives the other coexistence curve y.(z), and hence
B = [. In most cases of interest, we have a < J, and hence b,0' < 1. In
this case, the coexistence curves become tangential to the line y = 0 at the
critical point. Also, # < 1 for all admissible values of a and J, even in the
case a > 0.

The example of eq. (28) corresponds to a = 1 and 6 = 3. This gives a = 0,
B =1/2 and v = 1. These go under the name of classical exponents, or
mean field exponents. The first theory to yield these exponents was the
Van der Waals’ theory for the gas-liquid transition. Subsequently, it was put
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System Material o 15} v

Ferromagnets Fe 0.12+£0.01 0.34 £ 0.02 1.33 £ 0.01
Ni 0.10 +0.03 0.33 £0.03
YFeO4 0.35 + 0.02
Gas-liquid CO, 0.32 1.23-1.24
Binary mixtures Na-ND3 0.014 £0.011 0.324 +0.005 1.228 + 0.039
Micellization 0.34 +£0.08 1.216 £0.013

Table 1: Critical exponents for several systems with three dimensional Gibbs
space. The exponent ¢ is between 4.6 and 4.8 in those of the above systems
where it has been measured.

into modern form by Landau, and found uses as diverse as the description of
ferromagnetic ordering and superconductivity.

From the analysis above, it is clear that there are only two independent
critical exponents when the Gibbs space is three-dimensional. Thus, there
must be two relations between the four exponents. These can clearly be
written in many forms. Conventionally, they are given as

a+28+y = 2 (Rushbrooke's law), (40)
a+p0+1) = 2 (Griffith’s law). (41)

It turns out that critical exponents for real systems, such as those tabulated
in Table 1, satisfy these relations very well. However, these exponents differ
significantly from mean field exponents.

Relations between v and n and these indices can be obtained from a scal-
ing hypothesis for the correlation function of eq. (13). Correlation functions
are not extensive variables, nor are they intensive variables (in the sense of
being derivatives of the internal energy with respect to another extensive
variable). Hence they lie outside the purview of thermodynamics. However,
a scaling hypothesis for this function yields two further relations between v,
n and these four exponents (see problem on correlations). Thus, the num-
ber of independent exponents remains two. This finds a justification in the
renormalisation group.

Problem set 1.3
1. Show that the scaling form for the energy density leads to scaling for
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the equation of state in the form
) p
Y18

This leads to the law of corresponding states, the equation of state
is an universal relation between the ratios q/y’ and p/y'/?. (Note that
p, q and y are the deviations of the corresponding quantities from their
critical values.)

. Show that the Kadanoff scaling form

oty = e (D)), (43)

where C(r) is the correlation function in eq. 13 for a D-dimensional
system, and g(x) has finite range, gives the relation between exponents

v = v(2-—n), (Fisher's law), (44)
vD = 2-—aq, (Josephson's law). (45)

Use the definition x = [ d”rC(r). Relations between exponents which
explicitly involve the spatial dimension D are called hyperscaling re-
lations.

. Devise a statistical test that all the systems listed in Table 1 have the
same critical exponents. Use the scaling laws to fill in the missing en-
tries, and give estimates of their uncertainties (assume that the error
estimates are of one-sigma Gaussian errors). What possible thermody-
namic criteria can you devise for systems to belong to this universality
class of critical behaviour?

The scaling form for the internal energy leads to the observation that

h/y? and t/x are functions only of the ratio y/x°. As a result, one can write
Widom’s scaling form for the Gibbs’ free energy,

_ [ oG, (hje#) (t>0).
o) = { % G20, 40)

where both G, and G_ are regular at the origin. Such a form describes only
the leading behaviour of the free energy close to the critical point; a regular
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part, neglected here, also exists. We shall later return to a brief consideration
of it.

We saw that the critical behaviour of a system, in the sense of values
of the exponents eqs. (17-20), is specified completely by the scaling form of
the internal or the free energy. As a result, it is possible that very different
physical systems may show the same critical behaviour (see, for example,
Table 1). This notion is called universality. The critical indices specify
an universality class. Not just the critical exponents, but the full func-
tions G1 could be universal. As a result, ratios of certain quantities taken
just above and below the critical point also turn out to be universal. For
example, Cy(07)/Cy(07) is equal to G, (0)/G_(0), and hence universal. The
Rushbrook and Griffiths’ relations can be obtained from eq. (46).

The description of a C-component fluid requires a Gibbs space of C + 2
dimensions, which are C' molar fractions and U and S. By a Legendre trans-
form, C' — 1 extensive variables can be traded for the corresponding intensive
quantities, and U for the corresponding free energy. When the intensive vari-
ables are held fixed, the system has an effective description equivalent to that
of the one-component fluid. In the full Gibbs space, however, multicritical
points may exist. At such points the number of independent exponents may
be as large as C' 4+ 1. Even if only a normal critical point occurs, there may
be more than 2 independent critical exponents, and several more dependent
ones.

Homogeneity of a function of two variables is not preserved under linear
transformations. Hence, in general, there are corrections to the scaling forms
given above. nevertheless, it is possible for the scaling property to be valid for
the dominant term of an asymptotic expansion. This gives, as an example,
the asymptotic scaling form

u(z,y) = a6 (||i) (47)

This gives corrections to the scaling formule in eqgs. (17-20), in the form of
subleading exponents.
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adiabatic change, 2, 5, 6
amphipathic molecules, 5
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Boltzmann constant, 2
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Clausius-Clapeyron equation, 15
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function, 10, 11, 18, 19
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corresponding states, 19
coupling, 3
critical
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a, 11, 17
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classical, 17
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mean field, 17
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index, see exponent
point, 10, 13-15

Ehrenfest classification, 810
energy representation, 4, 16
enthalpy, 7
entropy, 2, 4, 5, 8, 9
representation, see entropy rep-
resentation
surface, see entropy surface
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entropy representation, 4

entropy surface, 3, 4, 6, 8, 13, 14

equilibrium, 1, 3, 7, 11

Euler’s theorem, 12, 16

extensive variable, 1, 7, 8, 10, 12,
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ferromagnet, 5, 11, 18
Fisher law, 19
fluctuation, 10, 11
fluid, 1, 4, 11, 12, 20
one component, 4, 5, 7, 10, 13,
15, 20
single component, 14
free energy, 7, 11
Gibbs, 7
Helmholtz, 7

generator, 8, 9, 13-15

Gibbs space, 2, 3, 7, 8, 13-15, 18
Gibbs-Duhem relation, 13
Ginzburg-Landau, 9, 18

Griffith law, 18

H, see enthalpy
heat, 1, 2
hyperscaling, 19

intensive variable, 4, 10, 14, 18
internal energy, 16

internal energy, 1, 4, 12, 18, 19
irreversible change, 2

Josephson law, see hyperscaling

k, see Boltzmann constant



Legendre transform, 7, 10, 15, 16,
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M, see magnetisation
macroscopic, 1
magnetisation, 1, 5
Maxwell relations, 7
micelles, 5, 18

molar volume, 1
multicritical point, 14, 20

order parameter, 13, 14, 16

P, see pressure
phase diagram, 14, 15
phase transition, 8, 10
first order, 8
line, 14
second order, 8, 10
pressure, 1, 4
critical, 10

Q, see heat

quasi-static change, see adiabatic

change

renormalisation group, 18
response function, 4, 10, 11
reversible change, 2, 6
ruled surface, 13
Rushbrooke law, 18

S, see entropy
scaling
corrections to, 20
form, 16, 18-20
hypothesis, 18
Kadanoff, 19
Widom, 19

seperation point, 13

specific heat, 4, 11
stability, 3-5, 8, 13
superconductivity, 18
symmetry, 11, 16

T, see temperature
T., see temperature, critical
temperature, 2, 4

critical, 10
thermodynamics, 1

equilibrium, 2

first law, 1

force, 1

second law, 2, 5

state, 1

state function, 1
tricritical point, see multicritical point

U, see internal energy
universality, 20
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V', see molar volume
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