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1 ThermodynamisThermodynamis deals with isolated systems of marosopi dimensions.Typial marosopi systems ontain about 1023 partiles. The systemsare isolated from their surroundings in that the input of any form of en-ergy to them is totally ontrolled. Thermodynamis is onerned with thebehaviour and inter-relations of a set of extensive variables, suh as themolar volume, V , of a uid, the total internal energy, U , of a system, orthe total magnetisation, M , of a metal. These variables are alled exten-sive beause they depend linearly on the amount of material being studied.All other fators remaining the same, if we double the number of moleulesin the system, all these quantities double. The number of suh extensivevariables is very muh smaller than the number of mirosopi degrees offreedom. We shall arry over into thermodynamis the notion of an equi-librium state as one in whih the energy is at its minimum, for �xed valuesof every other extensive variable. The thermodynamial state of any systemis the spei�ation of all the extensive quantities that haraterise suh anisolated marosopi system in equilibrium.The �rst law of thermodynamis odi�es the result of Joule's experi-ments on the interonvertibility of heat, Q, and forms of mehanial energy|dU = ÆQ+ F � dX; (1)where eah Xi stands for an extensive quantity and Fi for a \fore". If oneof the Xi is V , then the orresponding Fi = �P (where P is the pressure inequilibrium). The hange in mehanial energy is just F � dX. The internalenergy di�ers from this mehanial energy by taking into aount the heat.Note that U , P and V are all funtions of state, i.e., they depend only1



on the thermodynamial states of the system, and not, for example, on itsprevious history. However, Q is not a state funtion. The value of everystate funtion, Xi, an be measured| either diretly, or by the work donein hanging the state. This gives unambiguous results, beause the work putinto the system to hange Xi an be extrated out of it by letting xi revertbak to its old value in a ontrolled way. While the amount of heat addedto a system, ÆQ an also be measured, the notion of a total heat ontent ofa system turns out to be meaningless. Why?Reversible hanges of a system are those in whih the system alwaysremains in equilibrium, and hene an be desribed by thermodynamis whileit hanges. Usually this means hanging the system very slowly, i.e., in aquasi-stati manner. An adiabati hange in a system is one in whih no heatis added or removed from the system; in other words, an adiabati hangehappens to a thermally isolated system. Irreversible hanges lie outside thesope of thermodynamis.The seond law of thermodynamis postulates the existene of a newextensive state variable| the entropy, S, whih is an inreasing funtion ofU . The law states that in an adiabati hange in the state of a system, theentropy always inreases| dS(adiabati) � 0: (2)Almost all thermodynamial identities follow from these two laws and thenotions that surround them. In the remainder of this leture, we shall restatethese notions in a way that allows us to deal in a very straight-forward mannerwith phase transition.A word about units. The �rst law tells us that heat is measured inunits of energy. If we take the entropy to be dimensionless, then ÆQ = TdSodi�es the view that temperature is also to be measured in energy units.Boltzmann's onstant, k, is then dimensionless and set equal to unity. Ifhistorial relis, suh as the Kelvin sale, make an appearane then it is asimple matter to reinstate k = 1:380 658 (12)� 10�23 J=K.
2 A Geometrial ViewThe spae of all extensive variables, inluding the entropy, is alled theGibbsspae. Thermodynamis is the study of relationships and movements of asystem in Gibbs spae. The equilibrium states of a system orrespond to2
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Figure 1: A three dimensional Gibbs spae. The urved surfae shown is apossible setion of the entropy surfae.
those of maximum entropy for given values of other extensive variables. Eahequilibrium state thus orresponds to a point on the hypersurfae S(X) alledthe entropy surfae. The oupling onjugate to Xi is de�ned to be

Ki = �S�Xi : (3)
For example, the oupling � � 1=T = KU .An entropy surfae must satisfy the properties1. Continuity: The ouplings, Ki, are ontinuous over the surfae.2. Stability: The surfae is onvex, i.e., lies entirely below the tangentplane drawn anywhere on the surfae. This implies that �2S=�X2i � 0everywhere on the surfae.The whole entropy surfae may not be physial. Extra onditions governthe physial region of Gibbs spae: for example, the ondition that T � 0
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is neessary to impose the ondition that S inreases with U . This repre-sentation, S(X), of the stable states of the system is alled the entropyrepresentation.An alternative representation of the same geometry is alled the energyrepresentation. It is obtained by desribing the surfae of stable states bythe funtional dependene of the internal energy, U , on the rest of the exten-sive variables, inluding S. This is just a hange of variables from S(U;X)to U(S;X); the entropy surfae remains the same in the two representations.The intensive variables are de�ned, analogous to the ouplings, throughKi = �U�Xi : (4)It is also ustomary to de�ne the response funtions
�i = �Xi�Ki =  �2U�X2i !�1 : (5)The stability ondition now leads to the more familiar statement that theenergy is at a minimum. This also implies that the surfae is everywhereabove any tangent plane, i.e., �2U=�X2i > 0, globally. This further leads tothe usual form of the stability onditions, �i > 0.Example I.1 (A single omponent uid) The Gibbs spae is three di-mensional, onsisting of S, U and the molar volume, V . The two dimensionalentropy surfae is given by a relation S(U; V ). In the energy representationthe same surfae has the desription U(S; V ). The familiar intensive vari-ables, the temperature T and the pressure P are given byT = KS = �U�S �����V = 1KUP = �KV = � �U�V �����S = �S�V �����V � �S�U �����U = KVKU ; (6)and are seen to have a simpler form in the energy representation. The sta-bility ondition on the spei� heat at onstant volume, CV , is obtained asCV = �U�T �����V � 0 sine 0 � �2S�U2 �����V = �(1=T )�U �����V = � 1T 2 �T�U �����V (7)Given that T � 0, it is ontinuous over the entropy surfae, and the surfaeis onvex, the entropy of a uid inreases with T .4



Do we have everything we need? By assuming T � 0 we have ensured thatthe entropy inreases with U . Reversible hanges move along the entropysurfae. Equilibrium states are stable. What about the seond law? Byde�nition we havedS = KidXi = �dU +KidXi = �ÆQ+ (Fi +Ki)dXi: (8)Now, for adiabati hanges, ÆQ = 0 and dS � 0, whih implies that fi ��Ki.
Problem set I.11. Chek that the form S(U; V ) = logUV gives an admissible entropysurfae. Show that PV = T = U .2. From all the de�nitions enountered till now, show that for reversibleproesses of a single omponent uid, dE = TdS � PdV .3. A rubber band is strethed by a weight hanging from it. The Gibbsspae is three dimensional| fS;U; Lg, where L is the length of theband. What are the intensive quantities? What are the stability on-ditions? What are their physial interpretations?4. Amphipathi moleules, suh as the ative ingredients in soaps, havea polar head and a non-polar tail. When added to water, they formglobules with all the polar heads stiking out and the tails tuked intogether. These strutures are alled mielles. The Gibbs spae isthree dimensional| fS;U;Ng, where N is the number of moles of theamphipathi moleule per unit mole of water. What are the intensivequantities? What are the stability onditions? What are their physialinterpretations?5. For some system, if U 00 and U 000 vanish for some X, then what are thestability onditions? (Primes denote derivatives with respet to X.)6. For a ferromagneti solid with bulk magnetisation M , what is the di-mension of Gibbs spae? What are intensive quantities, the stabilityonditions, and their physial signi�ane?
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7. In the three dimensional Gibbs spae of a single omponent uid, drawan admissible entropy surfae. Show the paths orresponding to re-versible and adiabati hanges. Also show the path orresponding to aCarnot yle.8. If CP = �U�T �����P ;then show that CP � CV . Apart from the proof, give a simple physialargument why this should be so.

Y

X

Figure 2: At eah X, all three urves have the same derivative, Y 0. Theyare distinguished by the intersetion of the tangent with the Y axis. TheLegendre transform is the funtion whih spei�es how this intersetion pointvaries with the slope.Sine the surfae U(S;X) is globally onvex, eah tangent touhes it atone point and annot interset it elsewhere. As a result, eah point on thesurfae has an unique value of the intensive variables Ki. It would then seempossible to desribe the entropy surfae entirely in terms of the Ki. However
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this is wrong. The entropy surfae annot be obtained by only speifyingits derivatives, sine suh a spei�ation will generate all rigid translationsof the surfae. Instead, the surfae has to be spei�ed by its derivatives atall points and the intersetion of the tangent plane with the U axis. Suh adesription is alled a Legendre transform. Consider the tangent plane toU at X0, i.e., T (X;X0) = U(X0) +PiKi(Xi�X0i ). It's interept on the Uaxis is given by T (Ki) = U(X0)�Xi KiX0i : (9)After elimination of U(X0) and X0 through the de�nition of the funtion andits derivatives, this de�nes the Legendre transform. We an also transformonly a subset of the extensive variables. Convexity of U(X) implies onvexityof T (K). Prove!Legendre transforms of U with respet to subsets of Ki are alled freeenergies. The familiar Helmholtz free energy is the transform F =U � TS. The enthalpy H = U � PV . The Gibbs' free energy is thefull transform G = U � TS � PV . The onvexity of U leads to the familiarondition that equilibrium states minimize free energy.The Maxwell's relations give the equality of mixed derivatives forthe energy surfae or its Legendre transforms. For example, starting fromU(S; V ), we obtain��V  �U�S ! = ��S  �U�V ! implying �T�V �����S = � �P�S �����V : (10)
Three other relations may be obtained for simple uids. In Gibbs spaes ofhigher dimensions further relations are obtained.
Problem set I.21. Show that the following funtions f(x) have the Legendre transformsg(y) shown, where, in eah ase, y = f 0(x).(a) f(x) = x1+n, and g(y) / jyj1+1=n, and hene, g(y) has a usp forn > 1.(b) f(x) = expx, and g(y) = y(1� log y).() f(x) = �1=(1 + x), and g(y) = y � 2py.
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For an entropy surfae S(X), and the plane ST (X;X0) tangent to it atX0, we have the relationS(X0 + x) = ST (X0 + x;X0) + s(x); (x! 0) (11)where s(x) � 0 and both s and s0 vanish at x = 0. At a generi point, sine Shas a Taylor expansion with a non-vanishing seond deriative, s(x) dereasesquadratially. The speial points where s(x) is non-quadrati, thermody-nami stability is ahieved in di�erent ways. These points are alled phasetransition points. We shall deal with them next.
3 Phase Transitions: 2-d Gibbs Spaes.An old thermodynami de�nition of orders of phase transitions is known asEhrenfest's lassi�ation. Aording to this, if some extensive variableX has a disontinuity as the onjugate intensive variable, K, is tuned, thena �rst order phase transition is said to our. If X is ontinuous butthe derivative �X=�K is in�nite, then a seond order phase transitionis deemed to have ourred. Sometimes this is extended to (n + 1)-th orderphase transitions when (n � 1) partial derivatives of X (with respet to K)are ontinuous but the n-th has a disontinuity or is in�nite. In order todevelop ideas in simple onrete situations, we now deal with a two dimen-sional setion of the Gibbs spae, passing through the entropy axis. Theperpendiular diretion we all X.It is possible for a funtion �(X) to satisfy the ondition on the ontinuityof the derivativeK = �0(X), while violating that on the stability. In this asean aeptable entropy funtion, S(X), is generated by taking the outermostenvelope of the tangent lines to �(X). If we imagine onstruting S(X) byrolling a line over �, then this line bridges over re-entrant portions of thesurfae. Thus the entropy funtion has a portion whih is preisely at. Thisdesribes a region of two-phase mixtures, or �rst order phase transitions.In this two-phase region every tangent line makes ontat with the surfae� at two points, P� and P+. The line joining these two points is a generatorof the surfae. Along any suh line, the system is a mixture of the two purephases ahieved at P� and P+, and is spei�ed by the fration f of one ofthese states. The value of any extensive variable, X, along the generator is
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Figure 3: A globally onvex funtion an be formed from the non-onvexurve shown by rolling a straight line over it. This is the generi situation ata �rst order phase transition.
given by X(f) = fX� + (1� f)X+. The distribution of X over subsystemsis not peaked at X(f) but at the two pure phase values X� and X+. Thereis no restoring fore for disturbanes of the system along the generator. Suha disturbane merely hanges f , i.e., inreases the amount of one phase asthe expense of the other.Example I.2 (Ginzburg-Landau form) Consider, the expliit form �(X) =�(X2 � 1)2 �BX. Then, the globally onvex entropy is

S(X) = (�(X2 � 1)2 �BX for jXj � 1,�BX for jXj < 1. (12)
The oupling K = S 0(X) is ontinuous, and equal to the onstant �B inthe region �1 < X < 1. The seond derivative S 00(X) � 0 everywhere. For�1 < X < 1, S is at. This region orresponds to a mixture of the purephases obtained at X = 1 and X = �1, with S+ = B and S� = �B. If asystem has fration f of the �rst phase, then S(f) = fS+ + (1� f)S�.Suh a de�nition of a �rst order phase transition is equivalent to Ehren-fest's lassi�ation. The oupling, K = K�, is onstant over the two phase9



region, and hene does not speify the thermodynami state ompletely. Sonsidered as a funtion of K has a jump at K�. The same onsideration Show!applies in the energy representation, and further leads to the ondition thatthe Legendre transform, the free energy F , is equal for the two phases andeverywhere in the two-phase region.Next onsider a funtion, S(X), whih has slower than quadrati ontatwith the tangent line at a point X0. Then the system undergoes a seondorder phase transition at this point. Disturbanes of the system leadto unbounded utuations, and hene the system is alled ritial. Thedeviation from the tangent line, s(x) � x1+n. In general, n is not a number,sine s(x) may be non-analyti at x = 0. For suh ases we may writen = n(x). The deviation funtion for the Legendre transform is of the formjkj1+1=n, where k is the distane from the point of tangeny K0. Thus,the Legendre transform is regular if and only if n = 1. Also, the responsefuntion � = dx=dk / k1=n�1, and hene, for n > 1, goes to in�nity as k goesto zero, as a power of k. This power is alled a ritial exponent. Clearly,this situation orresponds to a seond order phase transition in Ehrenfest'slassi�ation.
4 Homogeneous Funtions, Critial IndiesIf X is some extensive variable, and the orresponding density is x, witha thermodynami expetation value x, then we an de�ne the orrelationfuntion between utuations asC(r) = h(x(r)� x)(x(0)� x)i: (13)Here x(r) is the value of x in a volume around the point r whih is muhlarger than any mirosopi length sale, but muh smaller than the systemsize. In general, the asymptoti fall-o� of C(r) de�nes a orrelation length,�, through the relation limr!1C(r) = exp(�r=�): (14)At a ritial point � diverges and the orrelations are unbounded. Theritial point is reahed by tuning all the intensive variables of the problem totheir ritial values. For example, in one-omponent uids, a ritial pointis spei�ed by the ritial temperature, T, and the ritial pressure, P.10



In ferromagneti systems, the temperature and the external magneti �eldmust be tuned to their ritial values, T and H respetively. In this ase,symmetry onditions imply H = 0.At P (or H) the divergene of the orrelation length
� = � �+jT � Tj� (T > T)��jT � Tj�0 (T < T) (15)

de�nes two ritial exponents � and � 0. They need not be equal. Preiselyat the ritial point, the orrelation funtion has the formC(r) � jrj2�d��; (16)where � is yet another ritial index. The indies � and � are related toutuations in equilibrium.Sine the free energy has a singular part at the ritial point, responsefuntions diverge here. At P (or H) the singular part of the spei� heatdiverges as CV � (A+jT � Tj�� (T > T)A�jT � Tj��0 (T < T). (17)These de�ne the exponents � and �0. Similiarly the inverse bulk ompress-ibility also diverges at P, and the magneti suseptibility at H. These givetwo new exponents
� � (A+jT � Tj� (T > T)A�jT � Tj�0 (T < T). (18)

Again, the exponents on the two sides of the ritial point need not be equal.In both these examples two phases oexist for T < T. For the uid, thedi�erene of the molar volumes from the ritial value, V, for eah of thetwo pure phases (say, gas and liquid) as a funtion of T de�nes two moreritial exponents
jV � Vj � ( (T � T )� (liquid phase)(T � T )�0 (gas phase). (19)The magneti ase is simpli�ed by symmetry. The ritial value of the spon-taneous magnetisation,M = 0. Furthermore, the two phases have equal andopposite magnetisations. As a result, � = �0.
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The oexistene urves are also desribed by other exponents. In themagneti ase this exponent desribes the vanishing of M at T with theapplied magneti �eld H. Thus,M � H1=Æ: (T = T) (20)In the uid ase, one may desribe the variation of jV �Vj, in the two phases,by two exponents Æ and Æ0, not neessarily equal.These exponents are not all independent. With the hypothesis that theinternal energy is a homogeneous funtion of the other extensive variablesnear a ritial point, many relations between them an be obtained. Wedefer the derivation of suh relations to the next setion, and end this withsome theorems on homogeneous funtions.Theorem I.1 (Power law behaviour of homogeneous funtions)If F (x) is a homogeneous funtion of x of degree n, then F (x) / xn.Proof: By de�nition, F (�x) = �nF (x). Taking y = �x at �xed x, we havedF (y)=dy = n�n�1F (x)=x. Dividing both sides of this equality by F (y), weget d logF (y)dy = ny : (21)This has the solution F (y) / yn.Theorem I.2 (Euler's theorem)If F is a generalised homogeneous funtion of n variables suh thatF (�a1x1; �a2x2; � � �) = �NF (x1; x2; � � �); (22)then NF (x1; x2; � � �) = nXi=1 ai �F�xixi: (23)
Proof: Writing F� = F (�a1x1; �a2x2; � � �), and F = F (x1; x2; � � �), we havedF�d� = Xi d�aid� xi�F��xi : (24)
Also dF�=d� = N�N�1F . Hene, putting � = 1, the theorem follows.
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Theorem I.3 (Fatorisation of homogeneous funtions)If F is a generalised homogeneous funtion of n variables suh thatF (�a1x1; �a2x2; � � �) = �NF (x1; x2; � � �); (25)then F an be written in the fatorised formF (x1; x2; � � �) = xN=a11 G(x2=xa2=a11 ; � � �): (26)Proof: Choose � = x1=a11 . The theorem follows.Euler's theorem has an appliation not onneted with phase transitions.In the energy representation, U(X), sine both U and X are extensive, andsale linearly with the amount of material, we have U(�X) = �U(X). ThenEuler's theorem leads to the Gibbs-Duhem relationU = KiXi: whih gives U = TS � PV; (27)for a single omponent uid.
5 Phase Transitions: The General Case.We return to the geometri desription of phase transitions, now workingin Gibbs spaes of larger than two dimensions. Given a primitive entropysurfae �(X), whih may obey the ontinuity ondition but violate that onstability, we an proeed as before to onstrut a globally onvex entropyfuntion S(X) by taking the outermost envelope of the tangent hypersur-faes to �. As before, re-entrant portions of � are bridged by planar setions,leading to a desription of multi-phase oexistene. However, more ompli-ated situations may arise in these higher dimensional ases. We lassify thephenomena here.The two-phase region of an entropy surfae onsists of a ruled surfae.The generators of suh a surfae are straight lines joining two pure-phasepoints, also alled seperation points. The lous of the two ends of thegenerators trae out a pair of lines alled the oexistene urve. There arethree topologies available to these urves|1. They terminate at the limit of some physial property, e.g., at T = 0.2. The two urves interset at a ritial point. The diretion of the limitinggenerator at this point de�nes the order parameter.13
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Figure 4: Possible phase diagram of a single omponent uid illustrates var-ious de�nitions.
3. More than two urves interset at multiritial points. This phe-nomenon an only our in Gibbs spaes of three or more dimensions.The image of the entropy surfae in the plane of two independent intensivevariables is alled a phase diagram. The image of a phase oexisteneregion on the phase diagram is a line alled the transition line. Suh a lineends at a ritial point (see Figure 4).Example I.3 (Ginzburg-Landau energy) Consider the entropy surfaegiven in the energy representation by

U(x; y) = (Ax2 + (x+ y2)2 (x > �y2)Ax2 (x � �y2). (28)
The primitive funtion U(x; y) = Ax2 + (x + y2)2 is re-entrant between theoexistene urves y = �p�x; (x < 0): (29)Hene, U(x; y) ontains a ruled surfae in this region orresponding to twophase oexistene. The origin is a ritial point. The generators are thelines of onstant (negative) x, and the order parameter is the line x = 0, i.e.,

14



the y-axis. The phase diagram is the plane orresponding to the intensiveouplings
p = � 2(1 + A)x+ 2y22Ax q = � 4y(x+ y2)0 (30)

In this plane the transition line is given by q = 0, ending in the ritial pointp = q = 0.Reall that eah point in the spae of intensive parameters orrespondsto a tangent to the entropy surfae. Hene the generators of the two-phaseregion orrespond to the intersetion of two almost parallel tangents. Thediretions of the generators are given in terms of �rst derivatives along thetransition line. Suh a relation is alled theClausius-Clapeyron equation.Example I.4 (One omponent uid) Sine the Gibbs' free energy in thetwo pure phases are equal at the two ends of a generator, G+(T; P ) =G�(T; P ). Hene, under in�nitesimal hanges of T and P , we obtain dG+ =dG�. This gives �S+dT + V+dP = �S�dT + V�dP , and therefore,dPdT = �S�V : (31)The derivative is the slope of the transition line in the phase diagram. �S and�V are the di�erenes between the pure phase values of these quantities alonga generator. The Clausius-Clapeyron equation above gives the diretion ofthe generator in terms of these quantities.We now examine the relations between the ritial exponents �, �,  andÆ. It turns out to be useful to set up some shorthand notation. First wede�ne the deviation between a funtion, F , and the surfae FT tangent to itat X0 F (X0 + x) = FT (X0 + x;X0) + f(x): (32)The deviation funtion f(x) and its derivatives are zero at x = 0. Thisorresponds to a shift in the origin. The same shift an be simultaneouslyapplied to the Legendre transform.In the following disussion we shall follow the onventions that1. The Gibbs spae has dimension 3, unless otherwise stated.
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2. We shall work in the energy representation and use the deviation fun-tion u(x; y). This is suÆient unless the energy itself is the order pa-rameter. We name the intensive variable t and h. They are de�ned ast = ux and h = uy.3. The ritial point is at the origin, i.e., x = y = 0.4. The Legendre transform of the internal energy, g(t; h), is also shifted sothat the ritial point is at the origin of the phase diagram, t = h = 0.Thus, derivatives of u vanish at the ritial point.5. The y-axis is the diretion of the order parameter.6. The order parameter is a symmetry diretion, so that u(x; y) = u(x;�y)and g(t; h) = g(t;�h).7. The two phase region ours for x < 0.8. u(x; y) is regular exept at the origin and in the two-phase region.9. uyy = 0 at the origin. Thus, the energy surfae is anomalously at atthe ritial point in the diretion of the order parameter. This inludesthe ase of both a power-law behaviour u � yk and a logarithmisingularity u � y2= log jyj.Now we disuss in detail the ase of a saling form for the energy fun-tion u(x; y). Assume that near the origin u � x1+a for onstant y, andu � y1+Æ for onstant x. By the requirement (8) at least one of a and Æ isgreater than unity. The requirement (9) spei�es that Æ > 1. Using Euler'stheorem we an write
u(x; y) = ( y1+Æu+(z) (y > 0)jyj1+Æu�(z) (y < 0) where z = xjyjh and h = 1 + Æ1 + a:(33)The funtions u+(z) and u�(z) are regular and non-zero near z = 0. Then,with u+(0) = u0, we �nd that y = (u0h)1=Æ: (34)Hene, Æ is preisely the ritial exponent de�ned in eq. (20). A similiarargument an be given for Æ0 in terms of u�.
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The behaviour of u+ and u� are also onstrained for z !1. The analysisis made simpler by writing b = 1=h and
u(x; y) = 8>>><>>>:

x1+a�+(z) (x > 0)jxj1+a��(z) (x < 0; y � y � y0)jxj1+a (z) (x < 0; y > y)jxj1+a 0(z) (x < 0; y0 < y) where z = yjxjb :(35)Here y(x) and y0(x) denote the oexistene urves, and enlose the two-phase region. Both �+ and �� are non-zero and regular near the origin.Hene, along the line y = 0, the de�nition t = ux yields the relation x / t1=a.Sine Cv / 1=uxx, we �nd � = 1� 1a: (36)
Similarly, using the de�nition � / 1=uyy and a Taylor series expansion of �+and ��, we �nd  = (1 + a)(Æ � 1)a(1 + Æ) : (37)The oexistene urve y(x) is given by the mathing ondition  (z) =��(z). Given the solution z, we �nd thaty = zjxjb � tb=a: (38)This immediately gives the remaining exponent

� = 1 + aa(1 + Æ) : (39)
A similiar analysis with  0 gives the other oexistene urve y0(x), and hene�0 = �. In most ases of interest, we have a < Æ, and hene b; b0 < 1. Inthis ase, the oexistene urves beome tangential to the line y = 0 at theritial point. Also, � < 1 for all admissible values of a and Æ, even in thease a > Æ.The example of eq. (28) orresponds to a = 1 and Æ = 3. This gives � = 0,� = 1=2 and  = 1. These go under the name of lassial exponents, ormean �eld exponents. The �rst theory to yield these exponents was theVan der Waals' theory for the gas-liquid transition. Subsequently, it was put
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System Material � � Ferromagnets Fe 0:12� 0:01 0:34� 0:02 1:33� 0:01Ni 0:10� 0:03 0:33� 0:03YFeO3 0:35� 0:02Gas-liquid CO2 0:32 1:23{1:24Binary mixtures Na-ND3 0:014� 0:011 0:324� 0:005 1:228� 0:039Miellization 0:34� 0:08 1:216� 0:013
Table 1: Critial exponents for several systems with three dimensional Gibbsspae. The exponent Æ is between 4.6 and 4.8 in those of the above systemswhere it has been measured.
into modern form by Landau, and found uses as diverse as the desription offerromagneti ordering and superondutivity.From the analysis above, it is lear that there are only two independentritial exponents when the Gibbs spae is three-dimensional. Thus, theremust be two relations between the four exponents. These an learly bewritten in many forms. Conventionally, they are given as� + 2� +  = 2 (Rushbrooke0s law); (40)�+ �(Æ + 1) = 2 (GriÆth0s law): (41)It turns out that ritial exponents for real systems, suh as those tabulatedin Table 1, satisfy these relations very well. However, these exponents di�ersigni�antly from mean �eld exponents.Relations between � and � and these indies an be obtained from a sal-ing hypothesis for the orrelation funtion of eq. (13). Correlation funtionsare not extensive variables, nor are they intensive variables (in the sense ofbeing derivatives of the internal energy with respet to another extensivevariable). Hene they lie outside the purview of thermodynamis. However,a saling hypothesis for this funtion yields two further relations between �,� and these four exponents (see problem on orrelations). Thus, the num-ber of independent exponents remains two. This �nds a justi�ation in therenormalisation group.
Problem set I.31. Show that the saling form for the energy density leads to saling for18



the equation of state in the form
q = yÆF  py1=�! : (42)

This leads to the law of orresponding states, the equation of stateis an universal relation between the ratios q=yÆ and p=y1=�. (Note thatp, q and y are the deviations of the orresponding quantities from theirritial values.)2. Show that the Kadano� saling form
C(r) = jrj2�D��C  r�p ! ; (43)

where C(r) is the orrelation funtion in eq. 13 for a D-dimensionalsystem, and g(x) has �nite range, gives the relation between exponents = �(2� �); (Fisher0s law); (44)�D = 2� �; (Josephson0s law): (45)Use the de�nition � = R dDrC(r). Relations between exponents whihexpliitly involve the spatial dimension D are alled hypersaling re-lations.3. Devise a statistial test that all the systems listed in Table 1 have thesame ritial exponents. Use the saling laws to �ll in the missing en-tries, and give estimates of their unertainties (assume that the errorestimates are of one-sigma Gaussian errors). What possible thermody-nami riteria an you devise for systems to belong to this universalitylass of ritial behaviour?
The saling form for the internal energy leads to the observation thath=yÆ and t=xa are funtions only of the ratio y=xb. As a result, one an writeWidom's saling form for the Gibbs' free energy,

g(t; h) = ( t2��G+(h=t�Æ) (t > 0),jtj2��G�(h=jtj�Æ) (t < 0). (46)
where both G+ and G� are regular at the origin. Suh a form desribes onlythe leading behaviour of the free energy lose to the ritial point; a regular19



part, negleted here, also exists. We shall later return to a brief onsiderationof it.We saw that the ritial behaviour of a system, in the sense of valuesof the exponents eqs. (17{20), is spei�ed ompletely by the saling form ofthe internal or the free energy. As a result, it is possible that very di�erentphysial systems may show the same ritial behaviour (see, for example,Table 1). This notion is alled universality. The ritial indies speifyan universality lass. Not just the ritial exponents, but the full fun-tions G� ould be universal. As a result, ratios of ertain quantities takenjust above and below the ritial point also turn out to be universal. Forexample, CV (0+)=CV (0�) is equal to G+(0)=G�(0), and hene universal. TheRushbrook and GriÆths' relations an be obtained from eq. (46).The desription of a C-omponent uid requires a Gibbs spae of C + 2dimensions, whih are C molar frations and U and S. By a Legendre trans-form, C�1 extensive variables an be traded for the orresponding intensivequantities, and U for the orresponding free energy. When the intensive vari-ables are held �xed, the system has an e�etive desription equivalent to thatof the one-omponent uid. In the full Gibbs spae, however, multiritialpoints may exist. At suh points the number of independent exponents maybe as large as C + 1. Even if only a normal ritial point ours, there maybe more than 2 independent ritial exponents, and several more dependentones.Homogeneity of a funtion of two variables is not preserved under lineartransformations. Hene, in general, there are orretions to the saling formsgiven above. nevertheless, it is possible for the saling property to be valid forthe dominant term of an asymptoti expansion. This gives, as an example,the asymptoti saling form
u(x; y) = jxj1+a� jxj1�b; yjxjb! : (47)

This gives orretions to the saling formul� in eqs. (17{20), in the form ofsubleading exponents.
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