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1 Thermodynami
sThermodynami
s deals with isolated systems of ma
ros
opi
 dimensions.Typi
al ma
ros
opi
 systems 
ontain about 1023 parti
les. The systemsare isolated from their surroundings in that the input of any form of en-ergy to them is totally 
ontrolled. Thermodynami
s is 
on
erned with thebehaviour and inter-relations of a set of extensive variables, su
h as themolar volume, V , of a 
uid, the total internal energy, U , of a system, orthe total magnetisation, M , of a metal. These variables are 
alled exten-sive be
ause they depend linearly on the amount of material being studied.All other fa
tors remaining the same, if we double the number of mole
ulesin the system, all these quantities double. The number of su
h extensivevariables is very mu
h smaller than the number of mi
ros
opi
 degrees offreedom. We shall 
arry over into thermodynami
s the notion of an equi-librium state as one in whi
h the energy is at its minimum, for �xed valuesof every other extensive variable. The thermodynami
al state of any systemis the spe
i�
ation of all the extensive quantities that 
hara
terise su
h anisolated ma
ros
opi
 system in equilibrium.The �rst law of thermodynami
s 
odi�es the result of Joule's experi-ments on the inter
onvertibility of heat, Q, and forms of me
hani
al energy|dU = ÆQ+ F � dX; (1)where ea
h Xi stands for an extensive quantity and Fi for a \for
e". If oneof the Xi is V , then the 
orresponding Fi = �P (where P is the pressure inequilibrium). The 
hange in me
hani
al energy is just F � dX. The internalenergy di�ers from this me
hani
al energy by taking into a

ount the heat.Note that U , P and V are all fun
tions of state, i.e., they depend only1



on the thermodynami
al states of the system, and not, for example, on itsprevious history. However, Q is not a state fun
tion. The value of everystate fun
tion, Xi, 
an be measured| either dire
tly, or by the work donein 
hanging the state. This gives unambiguous results, be
ause the work putinto the system to 
hange Xi 
an be extra
ted out of it by letting xi revertba
k to its old value in a 
ontrolled way. While the amount of heat addedto a system, ÆQ 
an also be measured, the notion of a total heat 
ontent ofa system turns out to be meaningless. Why?Reversible 
hanges of a system are those in whi
h the system alwaysremains in equilibrium, and hen
e 
an be des
ribed by thermodynami
s whileit 
hanges. Usually this means 
hanging the system very slowly, i.e., in aquasi-stati
 manner. An adiabati
 
hange in a system is one in whi
h no heatis added or removed from the system; in other words, an adiabati
 
hangehappens to a thermally isolated system. Irreversible 
hanges lie outside thes
ope of thermodynami
s.The se
ond law of thermodynami
s postulates the existen
e of a newextensive state variable| the entropy, S, whi
h is an in
reasing fun
tion ofU . The law states that in an adiabati
 
hange in the state of a system, theentropy always in
reases| dS(adiabati
) � 0: (2)Almost all thermodynami
al identities follow from these two laws and thenotions that surround them. In the remainder of this le
ture, we shall restatethese notions in a way that allows us to deal in a very straight-forward mannerwith phase transition.A word about units. The �rst law tells us that heat is measured inunits of energy. If we take the entropy to be dimensionless, then ÆQ = TdS
odi�es the view that temperature is also to be measured in energy units.Boltzmann's 
onstant, k, is then dimensionless and set equal to unity. Ifhistori
al reli
s, su
h as the Kelvin s
ale, make an appearan
e then it is asimple matter to reinstate k = 1:380 658 (12)� 10�23 J=K.
2 A Geometri
al ViewThe spa
e of all extensive variables, in
luding the entropy, is 
alled theGibbsspa
e. Thermodynami
s is the study of relationships and movements of asystem in Gibbs spa
e. The equilibrium states of a system 
orrespond to2
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Figure 1: A three dimensional Gibbs spa
e. The 
urved surfa
e shown is apossible se
tion of the entropy surfa
e.
those of maximum entropy for given values of other extensive variables. Ea
hequilibrium state thus 
orresponds to a point on the hypersurfa
e S(X) 
alledthe entropy surfa
e. The 
oupling 
onjugate to Xi is de�ned to be

Ki = �S�Xi : (3)
For example, the 
oupling � � 1=T = KU .An entropy surfa
e must satisfy the properties1. Continuity: The 
ouplings, Ki, are 
ontinuous over the surfa
e.2. Stability: The surfa
e is 
onvex, i.e., lies entirely below the tangentplane drawn anywhere on the surfa
e. This implies that �2S=�X2i � 0everywhere on the surfa
e.The whole entropy surfa
e may not be physi
al. Extra 
onditions governthe physi
al region of Gibbs spa
e: for example, the 
ondition that T � 0
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is ne
essary to impose the 
ondition that S in
reases with U . This repre-sentation, S(X), of the stable states of the system is 
alled the entropyrepresentation.An alternative representation of the same geometry is 
alled the energyrepresentation. It is obtained by des
ribing the surfa
e of stable states bythe fun
tional dependen
e of the internal energy, U , on the rest of the exten-sive variables, in
luding S. This is just a 
hange of variables from S(U;X)to U(S;X); the entropy surfa
e remains the same in the two representations.The intensive variables are de�ned, analogous to the 
ouplings, throughKi = �U�Xi : (4)It is also 
ustomary to de�ne the response fun
tions
�i = �Xi�Ki =  �2U�X2i !�1 : (5)The stability 
ondition now leads to the more familiar statement that theenergy is at a minimum. This also implies that the surfa
e is everywhereabove any tangent plane, i.e., �2U=�X2i > 0, globally. This further leads tothe usual form of the stability 
onditions, �i > 0.Example I.1 (A single 
omponent 
uid) The Gibbs spa
e is three di-mensional, 
onsisting of S, U and the molar volume, V . The two dimensionalentropy surfa
e is given by a relation S(U; V ). In the energy representationthe same surfa
e has the des
ription U(S; V ). The familiar intensive vari-ables, the temperature T and the pressure P are given byT = KS = �U�S �����V = 1KUP = �KV = � �U�V �����S = �S�V �����V � �S�U �����U = KVKU ; (6)and are seen to have a simpler form in the energy representation. The sta-bility 
ondition on the spe
i�
 heat at 
onstant volume, CV , is obtained asCV = �U�T �����V � 0 sin
e 0 � �2S�U2 �����V = �(1=T )�U �����V = � 1T 2 �T�U �����V (7)Given that T � 0, it is 
ontinuous over the entropy surfa
e, and the surfa
eis 
onvex, the entropy of a 
uid in
reases with T .4



Do we have everything we need? By assuming T � 0 we have ensured thatthe entropy in
reases with U . Reversible 
hanges move along the entropysurfa
e. Equilibrium states are stable. What about the se
ond law? Byde�nition we havedS = KidXi = �dU +KidXi = �ÆQ+ (Fi +Ki)dXi: (8)Now, for adiabati
 
hanges, ÆQ = 0 and dS � 0, whi
h implies that fi ��Ki.
Problem set I.11. Che
k that the form S(U; V ) = logUV gives an admissible entropysurfa
e. Show that PV = T = U .2. From all the de�nitions en
ountered till now, show that for reversiblepro
esses of a single 
omponent 
uid, dE = TdS � PdV .3. A rubber band is stret
hed by a weight hanging from it. The Gibbsspa
e is three dimensional| fS;U; Lg, where L is the length of theband. What are the intensive quantities? What are the stability 
on-ditions? What are their physi
al interpretations?4. Amphipathi
 mole
ules, su
h as the a
tive ingredients in soaps, havea polar head and a non-polar tail. When added to water, they formglobules with all the polar heads sti
king out and the tails tu
ked intogether. These stru
tures are 
alled mi
elles. The Gibbs spa
e isthree dimensional| fS;U;Ng, where N is the number of moles of theamphipathi
 mole
ule per unit mole of water. What are the intensivequantities? What are the stability 
onditions? What are their physi
alinterpretations?5. For some system, if U 00 and U 000 vanish for some X, then what are thestability 
onditions? (Primes denote derivatives with respe
t to X.)6. For a ferromagneti
 solid with bulk magnetisation M , what is the di-mension of Gibbs spa
e? What are intensive quantities, the stability
onditions, and their physi
al signi�
an
e?
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7. In the three dimensional Gibbs spa
e of a single 
omponent 
uid, drawan admissible entropy surfa
e. Show the paths 
orresponding to re-versible and adiabati
 
hanges. Also show the path 
orresponding to aCarnot 
y
le.8. If CP = �U�T �����P ;then show that CP � CV . Apart from the proof, give a simple physi
alargument why this should be so.

Y

X

Figure 2: At ea
h X, all three 
urves have the same derivative, Y 0. Theyare distinguished by the interse
tion of the tangent with the Y axis. TheLegendre transform is the fun
tion whi
h spe
i�es how this interse
tion pointvaries with the slope.Sin
e the surfa
e U(S;X) is globally 
onvex, ea
h tangent tou
hes it atone point and 
annot interse
t it elsewhere. As a result, ea
h point on thesurfa
e has an unique value of the intensive variables Ki. It would then seempossible to des
ribe the entropy surfa
e entirely in terms of the Ki. However
6



this is wrong. The entropy surfa
e 
annot be obtained by only spe
ifyingits derivatives, sin
e su
h a spe
i�
ation will generate all rigid translationsof the surfa
e. Instead, the surfa
e has to be spe
i�ed by its derivatives atall points and the interse
tion of the tangent plane with the U axis. Su
h ades
ription is 
alled a Legendre transform. Consider the tangent plane toU at X0, i.e., T (X;X0) = U(X0) +PiKi(Xi�X0i ). It's inter
ept on the Uaxis is given by T (Ki) = U(X0)�Xi KiX0i : (9)After elimination of U(X0) and X0 through the de�nition of the fun
tion andits derivatives, this de�nes the Legendre transform. We 
an also transformonly a subset of the extensive variables. Convexity of U(X) implies 
onvexityof T (K). Prove!Legendre transforms of U with respe
t to subsets of Ki are 
alled freeenergies. The familiar Helmholtz free energy is the transform F =U � TS. The enthalpy H = U � PV . The Gibbs' free energy is thefull transform G = U � TS � PV . The 
onvexity of U leads to the familiar
ondition that equilibrium states minimize free energy.The Maxwell's relations give the equality of mixed derivatives forthe energy surfa
e or its Legendre transforms. For example, starting fromU(S; V ), we obtain��V  �U�S ! = ��S  �U�V ! implying �T�V �����S = � �P�S �����V : (10)
Three other relations may be obtained for simple 
uids. In Gibbs spa
es ofhigher dimensions further relations are obtained.
Problem set I.21. Show that the following fun
tions f(x) have the Legendre transformsg(y) shown, where, in ea
h 
ase, y = f 0(x).(a) f(x) = x1+n, and g(y) / jyj1+1=n, and hen
e, g(y) has a 
usp forn > 1.(b) f(x) = expx, and g(y) = y(1� log y).(
) f(x) = �1=(1 + x), and g(y) = y � 2py.
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For an entropy surfa
e S(X), and the plane ST (X;X0) tangent to it atX0, we have the relationS(X0 + x) = ST (X0 + x;X0) + s(x); (x! 0) (11)where s(x) � 0 and both s and s0 vanish at x = 0. At a generi
 point, sin
e Shas a Taylor expansion with a non-vanishing se
ond deriative, s(x) de
reasesquadrati
ally. The spe
ial points where s(x) is non-quadrati
, thermody-nami
 stability is a
hieved in di�erent ways. These points are 
alled phasetransition points. We shall deal with them next.
3 Phase Transitions: 2-d Gibbs Spa
es.An old thermodynami
 de�nition of orders of phase transitions is known asEhrenfest's 
lassi�
ation. A

ording to this, if some extensive variableX has a dis
ontinuity as the 
onjugate intensive variable, K, is tuned, thena �rst order phase transition is said to o

ur. If X is 
ontinuous butthe derivative �X=�K is in�nite, then a se
ond order phase transitionis deemed to have o

urred. Sometimes this is extended to (n + 1)-th orderphase transitions when (n � 1) partial derivatives of X (with respe
t to K)are 
ontinuous but the n-th has a dis
ontinuity or is in�nite. In order todevelop ideas in simple 
on
rete situations, we now deal with a two dimen-sional se
tion of the Gibbs spa
e, passing through the entropy axis. Theperpendi
ular dire
tion we 
all X.It is possible for a fun
tion �(X) to satisfy the 
ondition on the 
ontinuityof the derivativeK = �0(X), while violating that on the stability. In this 
asean a

eptable entropy fun
tion, S(X), is generated by taking the outermostenvelope of the tangent lines to �(X). If we imagine 
onstru
ting S(X) byrolling a line over �, then this line bridges over re-entrant portions of thesurfa
e. Thus the entropy fun
tion has a portion whi
h is pre
isely 
at. Thisdes
ribes a region of two-phase mixtures, or �rst order phase transitions.In this two-phase region every tangent line makes 
onta
t with the surfa
e� at two points, P� and P+. The line joining these two points is a generatorof the surfa
e. Along any su
h line, the system is a mixture of the two purephases a
hieved at P� and P+, and is spe
i�ed by the fra
tion f of one ofthese states. The value of any extensive variable, X, along the generator is
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Figure 3: A globally 
onvex fun
tion 
an be formed from the non-
onvex
urve shown by rolling a straight line over it. This is the generi
 situation ata �rst order phase transition.
given by X(f) = fX� + (1� f)X+. The distribution of X over subsystemsis not peaked at X(f) but at the two pure phase values X� and X+. Thereis no restoring for
e for disturban
es of the system along the generator. Su
ha disturban
e merely 
hanges f , i.e., in
reases the amount of one phase asthe expense of the other.Example I.2 (Ginzburg-Landau form) Consider, the expli
it form �(X) =�(X2 � 1)2 �BX. Then, the globally 
onvex entropy is

S(X) = (�(X2 � 1)2 �BX for jXj � 1,�BX for jXj < 1. (12)
The 
oupling K = S 0(X) is 
ontinuous, and equal to the 
onstant �B inthe region �1 < X < 1. The se
ond derivative S 00(X) � 0 everywhere. For�1 < X < 1, S is 
at. This region 
orresponds to a mixture of the purephases obtained at X = 1 and X = �1, with S+ = B and S� = �B. If asystem has fra
tion f of the �rst phase, then S(f) = fS+ + (1� f)S�.Su
h a de�nition of a �rst order phase transition is equivalent to Ehren-fest's 
lassi�
ation. The 
oupling, K = K�, is 
onstant over the two phase9



region, and hen
e does not spe
ify the thermodynami
 state 
ompletely. S
onsidered as a fun
tion of K has a jump at K�. The same 
onsideration Show!applies in the energy representation, and further leads to the 
ondition thatthe Legendre transform, the free energy F , is equal for the two phases andeverywhere in the two-phase region.Next 
onsider a fun
tion, S(X), whi
h has slower than quadrati
 
onta
twith the tangent line at a point X0. Then the system undergoes a se
ondorder phase transition at this point. Disturban
es of the system leadto unbounded 
u
tuations, and hen
e the system is 
alled 
riti
al. Thedeviation from the tangent line, s(x) � x1+n. In general, n is not a number,sin
e s(x) may be non-analyti
 at x = 0. For su
h 
ases we may writen = n(x). The deviation fun
tion for the Legendre transform is of the formjkj1+1=n, where k is the distan
e from the point of tangen
y K0. Thus,the Legendre transform is regular if and only if n = 1. Also, the responsefun
tion � = dx=dk / k1=n�1, and hen
e, for n > 1, goes to in�nity as k goesto zero, as a power of k. This power is 
alled a 
riti
al exponent. Clearly,this situation 
orresponds to a se
ond order phase transition in Ehrenfest's
lassi�
ation.
4 Homogeneous Fun
tions, Criti
al Indi
esIf X is some extensive variable, and the 
orresponding density is x, witha thermodynami
 expe
tation value x, then we 
an de�ne the 
orrelationfun
tion between 
u
tuations asC(r) = h(x(r)� x)(x(0)� x)i: (13)Here x(r) is the value of x in a volume around the point r whi
h is mu
hlarger than any mi
ros
opi
 length s
ale, but mu
h smaller than the systemsize. In general, the asymptoti
 fall-o� of C(r) de�nes a 
orrelation length,�, through the relation limr!1C(r) = exp(�r=�): (14)At a 
riti
al point � diverges and the 
orrelations are unbounded. The
riti
al point is rea
hed by tuning all the intensive variables of the problem totheir 
riti
al values. For example, in one-
omponent 
uids, a 
riti
al pointis spe
i�ed by the 
riti
al temperature, T
, and the 
riti
al pressure, P
.10



In ferromagneti
 systems, the temperature and the external magneti
 �eldmust be tuned to their 
riti
al values, T
 and H
 respe
tively. In this 
ase,symmetry 
onditions imply H
 = 0.At P
 (or H
) the divergen
e of the 
orrelation length
� = � �+jT � T
j� (T > T
)��jT � T
j�0 (T < T
) (15)

de�nes two 
riti
al exponents � and � 0. They need not be equal. Pre
iselyat the 
riti
al point, the 
orrelation fun
tion has the formC(r) � jrj2�d��; (16)where � is yet another 
riti
al index. The indi
es � and � are related to
u
tuations in equilibrium.Sin
e the free energy has a singular part at the 
riti
al point, responsefun
tions diverge here. At P
 (or H
) the singular part of the spe
i�
 heatdiverges as CV � (A+jT � T
j�� (T > T
)A�jT � T
j��0 (T < T
). (17)These de�ne the exponents � and �0. Similiarly the inverse bulk 
ompress-ibility also diverges at P
, and the magneti
 sus
eptibility at H
. These givetwo new exponents
� � (A+jT � T
j�
 (T > T
)A�jT � T
j�
0 (T < T
). (18)

Again, the exponents on the two sides of the 
riti
al point need not be equal.In both these examples two phases 
oexist for T < T
. For the 
uid, thedi�eren
e of the molar volumes from the 
riti
al value, V
, for ea
h of thetwo pure phases (say, gas and liquid) as a fun
tion of T de�nes two more
riti
al exponents
jV � V
j � ( (T
 � T )� (liquid phase)(T
 � T )�0 (gas phase). (19)The magneti
 
ase is simpli�ed by symmetry. The 
riti
al value of the spon-taneous magnetisation,M
 = 0. Furthermore, the two phases have equal andopposite magnetisations. As a result, � = �0.
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The 
oexisten
e 
urves are also des
ribed by other exponents. In themagneti
 
ase this exponent des
ribes the vanishing of M at T
 with theapplied magneti
 �eld H. Thus,M � H1=Æ: (T = T
) (20)In the 
uid 
ase, one may des
ribe the variation of jV �V
j, in the two phases,by two exponents Æ and Æ0, not ne
essarily equal.These exponents are not all independent. With the hypothesis that theinternal energy is a homogeneous fun
tion of the other extensive variablesnear a 
riti
al point, many relations between them 
an be obtained. Wedefer the derivation of su
h relations to the next se
tion, and end this withsome theorems on homogeneous fun
tions.Theorem I.1 (Power law behaviour of homogeneous fun
tions)If F (x) is a homogeneous fun
tion of x of degree n, then F (x) / xn.Proof: By de�nition, F (�x) = �nF (x). Taking y = �x at �xed x, we havedF (y)=dy = n�n�1F (x)=x. Dividing both sides of this equality by F (y), weget d logF (y)dy = ny : (21)This has the solution F (y) / yn.Theorem I.2 (Euler's theorem)If F is a generalised homogeneous fun
tion of n variables su
h thatF (�a1x1; �a2x2; � � �) = �NF (x1; x2; � � �); (22)then NF (x1; x2; � � �) = nXi=1 ai �F�xixi: (23)
Proof: Writing F� = F (�a1x1; �a2x2; � � �), and F = F (x1; x2; � � �), we havedF�d� = Xi d�aid� xi�F��xi : (24)
Also dF�=d� = N�N�1F . Hen
e, putting � = 1, the theorem follows.
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Theorem I.3 (Fa
torisation of homogeneous fun
tions)If F is a generalised homogeneous fun
tion of n variables su
h thatF (�a1x1; �a2x2; � � �) = �NF (x1; x2; � � �); (25)then F 
an be written in the fa
torised formF (x1; x2; � � �) = xN=a11 G(x2=xa2=a11 ; � � �): (26)Proof: Choose � = x1=a11 . The theorem follows.Euler's theorem has an appli
ation not 
onne
ted with phase transitions.In the energy representation, U(X), sin
e both U and X are extensive, ands
ale linearly with the amount of material, we have U(�X) = �U(X). ThenEuler's theorem leads to the Gibbs-Duhem relationU = KiXi: whi
h gives U = TS � PV; (27)for a single 
omponent 
uid.
5 Phase Transitions: The General Case.We return to the geometri
 des
ription of phase transitions, now workingin Gibbs spa
es of larger than two dimensions. Given a primitive entropysurfa
e �(X), whi
h may obey the 
ontinuity 
ondition but violate that onstability, we 
an pro
eed as before to 
onstru
t a globally 
onvex entropyfun
tion S(X) by taking the outermost envelope of the tangent hypersur-fa
es to �. As before, re-entrant portions of � are bridged by planar se
tions,leading to a des
ription of multi-phase 
oexisten
e. However, more 
ompli-
ated situations may arise in these higher dimensional 
ases. We 
lassify thephenomena here.The two-phase region of an entropy surfa
e 
onsists of a ruled surfa
e.The generators of su
h a surfa
e are straight lines joining two pure-phasepoints, also 
alled seperation points. The lo
us of the two ends of thegenerators tra
e out a pair of lines 
alled the 
oexisten
e 
urve. There arethree topologies available to these 
urves|1. They terminate at the limit of some physi
al property, e.g., at T = 0.2. The two 
urves interse
t at a 
riti
al point. The dire
tion of the limitinggenerator at this point de�nes the order parameter.13



phase A

phase B

phase C

T

P

triple point

critical point

Figure 4: Possible phase diagram of a single 
omponent 
uid illustrates var-ious de�nitions.
3. More than two 
urves interse
t at multi
riti
al points. This phe-nomenon 
an only o

ur in Gibbs spa
es of three or more dimensions.The image of the entropy surfa
e in the plane of two independent intensivevariables is 
alled a phase diagram. The image of a phase 
oexisten
eregion on the phase diagram is a line 
alled the transition line. Su
h a lineends at a 
riti
al point (see Figure 4).Example I.3 (Ginzburg-Landau energy) Consider the entropy surfa
egiven in the energy representation by

U(x; y) = (Ax2 + (x+ y2)2 (x > �y2)Ax2 (x � �y2). (28)
The primitive fun
tion U(x; y) = Ax2 + (x + y2)2 is re-entrant between the
oexisten
e 
urves y = �p�x; (x < 0): (29)Hen
e, U(x; y) 
ontains a ruled surfa
e in this region 
orresponding to twophase 
oexisten
e. The origin is a 
riti
al point. The generators are thelines of 
onstant (negative) x, and the order parameter is the line x = 0, i.e.,

14



the y-axis. The phase diagram is the plane 
orresponding to the intensive
ouplings
p = � 2(1 + A)x+ 2y22Ax q = � 4y(x+ y2)0 (30)

In this plane the transition line is given by q = 0, ending in the 
riti
al pointp = q = 0.Re
all that ea
h point in the spa
e of intensive parameters 
orrespondsto a tangent to the entropy surfa
e. Hen
e the generators of the two-phaseregion 
orrespond to the interse
tion of two almost parallel tangents. Thedire
tions of the generators are given in terms of �rst derivatives along thetransition line. Su
h a relation is 
alled theClausius-Clapeyron equation.Example I.4 (One 
omponent 
uid) Sin
e the Gibbs' free energy in thetwo pure phases are equal at the two ends of a generator, G+(T; P ) =G�(T; P ). Hen
e, under in�nitesimal 
hanges of T and P , we obtain dG+ =dG�. This gives �S+dT + V+dP = �S�dT + V�dP , and therefore,dPdT = �S�V : (31)The derivative is the slope of the transition line in the phase diagram. �S and�V are the di�eren
es between the pure phase values of these quantities alonga generator. The Clausius-Clapeyron equation above gives the dire
tion ofthe generator in terms of these quantities.We now examine the relations between the 
riti
al exponents �, �, 
 andÆ. It turns out to be useful to set up some shorthand notation. First wede�ne the deviation between a fun
tion, F , and the surfa
e FT tangent to itat X0 F (X0 + x) = FT (X0 + x;X0) + f(x): (32)The deviation fun
tion f(x) and its derivatives are zero at x = 0. This
orresponds to a shift in the origin. The same shift 
an be simultaneouslyapplied to the Legendre transform.In the following dis
ussion we shall follow the 
onventions that1. The Gibbs spa
e has dimension 3, unless otherwise stated.
15



2. We shall work in the energy representation and use the deviation fun
-tion u(x; y). This is suÆ
ient unless the energy itself is the order pa-rameter. We name the intensive variable t and h. They are de�ned ast = ux and h = uy.3. The 
riti
al point is at the origin, i.e., x
 = y
 = 0.4. The Legendre transform of the internal energy, g(t; h), is also shifted sothat the 
riti
al point is at the origin of the phase diagram, t
 = h
 = 0.Thus, derivatives of u vanish at the 
riti
al point.5. The y-axis is the dire
tion of the order parameter.6. The order parameter is a symmetry dire
tion, so that u(x; y) = u(x;�y)and g(t; h) = g(t;�h).7. The two phase region o

urs for x < 0.8. u(x; y) is regular ex
ept at the origin and in the two-phase region.9. uyy = 0 at the origin. Thus, the energy surfa
e is anomalously 
at atthe 
riti
al point in the dire
tion of the order parameter. This in
ludesthe 
ase of both a power-law behaviour u � yk and a logarithmi
singularity u � y2= log jyj.Now we dis
uss in detail the 
ase of a s
aling form for the energy fun
-tion u(x; y). Assume that near the origin u � x1+a for 
onstant y, andu � y1+Æ for 
onstant x. By the requirement (8) at least one of a and Æ isgreater than unity. The requirement (9) spe
i�es that Æ > 1. Using Euler'stheorem we 
an write
u(x; y) = ( y1+Æu+(z) (y > 0)jyj1+Æu�(z) (y < 0) where z = xjyjh and h = 1 + Æ1 + a:(33)The fun
tions u+(z) and u�(z) are regular and non-zero near z = 0. Then,with u+(0) = u0, we �nd that y = (u0h)1=Æ: (34)Hen
e, Æ is pre
isely the 
riti
al exponent de�ned in eq. (20). A similiarargument 
an be given for Æ0 in terms of u�.

16



The behaviour of u+ and u� are also 
onstrained for z !1. The analysisis made simpler by writing b = 1=h and
u(x; y) = 8>>><>>>:

x1+a�+(z) (x > 0)jxj1+a��(z) (x < 0; y
 � y � y
0)jxj1+a (z) (x < 0; y
 > y)jxj1+a 0(z) (x < 0; y
0 < y) where z = yjxjb :(35)Here y
(x) and y
0(x) denote the 
oexisten
e 
urves, and en
lose the two-phase region. Both �+ and �� are non-zero and regular near the origin.Hen
e, along the line y = 0, the de�nition t = ux yields the relation x / t1=a.Sin
e Cv / 1=uxx, we �nd � = 1� 1a: (36)
Similarly, using the de�nition � / 1=uyy and a Taylor series expansion of �+and ��, we �nd 
 = (1 + a)(Æ � 1)a(1 + Æ) : (37)The 
oexisten
e 
urve y
(x) is given by the mat
hing 
ondition  (z
) =��(z
). Given the solution z
, we �nd thaty
 = z
jxjb � tb=a: (38)This immediately gives the remaining exponent

� = 1 + aa(1 + Æ) : (39)
A similiar analysis with  0 gives the other 
oexisten
e 
urve y
0(x), and hen
e�0 = �. In most 
ases of interest, we have a < Æ, and hen
e b; b0 < 1. Inthis 
ase, the 
oexisten
e 
urves be
ome tangential to the line y = 0 at the
riti
al point. Also, � < 1 for all admissible values of a and Æ, even in the
ase a > Æ.The example of eq. (28) 
orresponds to a = 1 and Æ = 3. This gives � = 0,� = 1=2 and 
 = 1. These go under the name of 
lassi
al exponents, ormean �eld exponents. The �rst theory to yield these exponents was theVan der Waals' theory for the gas-liquid transition. Subsequently, it was put

17



System Material � � 
Ferromagnets Fe 0:12� 0:01 0:34� 0:02 1:33� 0:01Ni 0:10� 0:03 0:33� 0:03YFeO3 0:35� 0:02Gas-liquid CO2 0:32 1:23{1:24Binary mixtures Na-ND3 0:014� 0:011 0:324� 0:005 1:228� 0:039Mi
ellization 0:34� 0:08 1:216� 0:013
Table 1: Criti
al exponents for several systems with three dimensional Gibbsspa
e. The exponent Æ is between 4.6 and 4.8 in those of the above systemswhere it has been measured.
into modern form by Landau, and found uses as diverse as the des
ription offerromagneti
 ordering and super
ondu
tivity.From the analysis above, it is 
lear that there are only two independent
riti
al exponents when the Gibbs spa
e is three-dimensional. Thus, theremust be two relations between the four exponents. These 
an 
learly bewritten in many forms. Conventionally, they are given as� + 2� + 
 = 2 (Rushbrooke0s law); (40)�+ �(Æ + 1) = 2 (GriÆth0s law): (41)It turns out that 
riti
al exponents for real systems, su
h as those tabulatedin Table 1, satisfy these relations very well. However, these exponents di�ersigni�
antly from mean �eld exponents.Relations between � and � and these indi
es 
an be obtained from a s
al-ing hypothesis for the 
orrelation fun
tion of eq. (13). Correlation fun
tionsare not extensive variables, nor are they intensive variables (in the sense ofbeing derivatives of the internal energy with respe
t to another extensivevariable). Hen
e they lie outside the purview of thermodynami
s. However,a s
aling hypothesis for this fun
tion yields two further relations between �,� and these four exponents (see problem on 
orrelations). Thus, the num-ber of independent exponents remains two. This �nds a justi�
ation in therenormalisation group.
Problem set I.31. Show that the s
aling form for the energy density leads to s
aling for18



the equation of state in the form
q = yÆF  py1=�! : (42)

This leads to the law of 
orresponding states, the equation of stateis an universal relation between the ratios q=yÆ and p=y1=�. (Note thatp, q and y are the deviations of the 
orresponding quantities from their
riti
al values.)2. Show that the Kadano� s
aling form
C(r) = jrj2�D��C  r�p ! ; (43)

where C(r) is the 
orrelation fun
tion in eq. 13 for a D-dimensionalsystem, and g(x) has �nite range, gives the relation between exponents
 = �(2� �); (Fisher0s law); (44)�D = 2� �; (Josephson0s law): (45)Use the de�nition � = R dDrC(r). Relations between exponents whi
hexpli
itly involve the spatial dimension D are 
alled hypers
aling re-lations.3. Devise a statisti
al test that all the systems listed in Table 1 have thesame 
riti
al exponents. Use the s
aling laws to �ll in the missing en-tries, and give estimates of their un
ertainties (assume that the errorestimates are of one-sigma Gaussian errors). What possible thermody-nami
 
riteria 
an you devise for systems to belong to this universality
lass of 
riti
al behaviour?
The s
aling form for the internal energy leads to the observation thath=yÆ and t=xa are fun
tions only of the ratio y=xb. As a result, one 
an writeWidom's s
aling form for the Gibbs' free energy,

g(t; h) = ( t2��G+(h=t�Æ) (t > 0),jtj2��G�(h=jtj�Æ) (t < 0). (46)
where both G+ and G� are regular at the origin. Su
h a form des
ribes onlythe leading behaviour of the free energy 
lose to the 
riti
al point; a regular19



part, negle
ted here, also exists. We shall later return to a brief 
onsiderationof it.We saw that the 
riti
al behaviour of a system, in the sense of valuesof the exponents eqs. (17{20), is spe
i�ed 
ompletely by the s
aling form ofthe internal or the free energy. As a result, it is possible that very di�erentphysi
al systems may show the same 
riti
al behaviour (see, for example,Table 1). This notion is 
alled universality. The 
riti
al indi
es spe
ifyan universality 
lass. Not just the 
riti
al exponents, but the full fun
-tions G� 
ould be universal. As a result, ratios of 
ertain quantities takenjust above and below the 
riti
al point also turn out to be universal. Forexample, CV (0+)=CV (0�) is equal to G+(0)=G�(0), and hen
e universal. TheRushbrook and GriÆths' relations 
an be obtained from eq. (46).The des
ription of a C-
omponent 
uid requires a Gibbs spa
e of C + 2dimensions, whi
h are C molar fra
tions and U and S. By a Legendre trans-form, C�1 extensive variables 
an be traded for the 
orresponding intensivequantities, and U for the 
orresponding free energy. When the intensive vari-ables are held �xed, the system has an e�e
tive des
ription equivalent to thatof the one-
omponent 
uid. In the full Gibbs spa
e, however, multi
riti
alpoints may exist. At su
h points the number of independent exponents maybe as large as C + 1. Even if only a normal 
riti
al point o

urs, there maybe more than 2 independent 
riti
al exponents, and several more dependentones.Homogeneity of a fun
tion of two variables is not preserved under lineartransformations. Hen
e, in general, there are 
orre
tions to the s
aling formsgiven above. nevertheless, it is possible for the s
aling property to be valid forthe dominant term of an asymptoti
 expansion. This gives, as an example,the asymptoti
 s
aling form
u(x; y) = jxj1+a� jxj1�b; yjxjb! : (47)

This gives 
orre
tions to the s
aling formul� in eqs. (17{20), in the form ofsubleading exponents.
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