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Plasmas

A neutral conductor

Definition
A plasma is any material which is overall charge neutral but
contains mobile charge.

Any charge neutral medium which conducts electricity is likely to
be plasma. Tap water is the most common plasma: it conducts
well enough that a wet hand is dangerous near an electrical mains.
The cellular material of animals, plants and bacteria are plasmas.
Most gas in galaxies are plasmas. All plasmas need not be fluid;
metals are plasmas.

Sometimes the notion of a charged plasma is also introduced.
These are of technological importance: for example beams of
electrons which are used to produce x-rays. In this lecture we will
confine ourselves to plasmas in the older sense: those which are
electrically neutral.



Electrical conductivity

The electrical resistance of a material is defined to be the ratio of
the current carried by the material to the applied potential
difference: R = V//J. Since [J] = MY/2[3/2T=2 and

[V] = MY21Y2T=1 we have [R] = L~'T in Gaussian units.

The resistance may depend on the geometry of the material, so an
intensive quantity is required to characterize the material. This is
the resistivity, p = RA/L, where A is the cross sectional area of the
current carrying medium and L the length through which the
current flows. So [p] = T. The conductivity of a material is the
inverse of the resistivity: o = 1/p, so [0] = T~L.

InSI {J}=A, {V}=kegm?/(As®) =V

{R} = kgm?/(A%3) = V/A = Q, where the ohm (Q) is the derived SI
unit of resistance. So {p} = Qm, {c} = S/m, where Siemens (5=1/Q)
is the Sl derived unit of conductivity.



Plasmas

A small exercise

Suppose we make a small modification of Millikan's experiment.
Initially balance some charges between the plates of a capacitor,
separated by a distance /. Then suddenly change the voltage to a
different value, V. The charges accelerate towards the plates.
Taking the number of charges projected per unit area of a plate as
n, one can neglect interactions between the charges if n is small
enough. Then can we compute the conductivity of the charges?

Dimensional analysis involves [n] = L2, [{] = L, [m] = M,

[e] = MY213/2T-1 [V] = MY2[1/2T—1, we find

[neV /m] = T~2. Then dimensionally one might expect o2 to be
this expression. The appearance of V in the formula is
unsatisfactory. From the remaining quantities, we find
[nef'/2/m1/2] = T—1. This solution is unsatisfactory because the
shape variable ¢ appears in the formula for o.



Plasmas

Ohm’s law is not due to ballistic transport

Why does dimensional analysis fail? Solve the problem to find why.
The acceleration is constant: a = eE/m = eV /(m{). The charge
travels a distance d in time \/2dm/(eE), and then its velocity is
\/2eEd/m. So there is a pulse of particles passing any surface,
and not a continuous current of particles. So ballistic motion of
charges is not compatible with our observations of materials. This
is the reason why dimensional analysis failed.

Is it enough to introduce collisions between particles? If the
number of collisions is large enough, then perhaps the velocities
can be fully randomized by collisions. If the mean drift velocity is
v, and the mean free path is A, then p & A\/v. A question which
would arise then is whether this is independent of V. The theory
of transport is open to interesting dimensional analysis.



Debye Screening Plasma Oscillations Landau damping
The mythical one-component plasma

We assume that the mobile charges are in thermal equilibrium
when no external field is present. The temperature, ©, then sets
the scale of kinetic energy of the charges. Assume that the charge
of each particle is e, and their number density is n. The average
distance between charges is rp = 1/+/n.

The scattering cross section between charges must involve e.
Since [e?] = ML3T 2, dimensional considerations dictate that the
Rutherford scattering cross section is

e4

v
The Rutherford scattering formula, or has another factor for the
angular dependence, which is divergent for small angle scattering:
1/4*. Small angle scattering happens when the charges approach
each other with large impact parameter. Then should other
charges in the plasma be taken into account?



Debye Screening Plasma Oscillations Landau damping
The plasma parameter

In fact, the microscopic variables in the plasma can be used to
create a dimensionless variable, called the plasma parameter,

e2 e2
N=Fers=—.
\3/5@ n®

This is a comparison between the average electrostatic potential
energy between two charges in the plasma, e?/rg, and the kinetic
energy, ©.

If A < 1, then one says that the plasma is weakly coupled. On the
other hand, if A ~ 1 or greater, then the plasma is said to be
strongly coupled. 1/v/A is the smallest angle that can be taken
into account through two-body scattering in a plasma.

The length scale, r, = rg/A is called the Debye screening length.
At distances of approach below this, the Coulomb force between
two particles in a plasma is not strongly modified.



Debye Screening Plasma Oscillations Landau damping
Space charge formation and screening

The number of charge carriers in a volume of radius rp is

nrd ~1/A3. For a weakly coupled plasma this is large. The
modification of the Coulomb potential is due to a many-body
effect.

This many body effect is the formation of a space charge. If an
external charge is introduced into a plasma, then it attracts
opposite charges towards itself, and repels similar charges. For
A < 1, the thermal energy is much larger than the Coulomb
energy, so the charges can knock each other around. So a larger
volume is needed to shield (screen) the charge, and appreciably
decrease the Coulomb force between it and a distant charge.

Another way to state this is to say that the charge e depends on
the distance at which it is measured, e(r). This can happen
because of the generation of a new length scale: e(r) = ef(r/rp).



Debye Screening Plasma Oscillations Landau damping
Excitation by external fields

If an electromagnetic wave impinges on the plasma, the response
of the medium depends on the frequency. Write

kp = 1/r, = €/(©rg). For waves with k > kp, the wave will
drive charged particles individually. The energy of the wave will be
lost in accelerating each particle separately.

In the opposite limit k < kp, there will be collective effects. In the
limit k — 0, i.e., for static fields, there will be a space charge
separation. If the field begins to oscillate slowly, so will the space
charge. So, for very slow and long waves, the different charges in
the plasma begin to separate out, and then oscillate against each
other. These are called plasma oscillations.

Plasma oscillations are also called Langmuir waves. Quantized
plasma oscillations are important in metals; they are called
plasmons.



Physics Debye Screening Plasma Oscillations Landau damping
The plasma frequency

The quantities of interest are e, n and the mass of the charges, m.
Since [e] = MY/2[3/2T—1 and [n] = L=3, it is clear that the only
frequency one can construct is the plasma frequency

e2n e?
wp = — =] —5.
P m mrg

An incident wave with w = w, can destabilize the plasma by
pumping in energy and separating out the charges.

This formula is true for strongly interacting plasmas. When A < 1
thermal motion can randomize the coherent effect of the wave. As
a result, © will control the magnitude of the dissipative terms.

Since, the charges have speed v ~ /©/m, one might expect the
plasma wave dispersion relation to be modified to

w2 = w',% + k2v2.



Debye Screening Plasma Oscillations Landau damping
The plasma parameter again

It is also interesting to construct the submicroscopic length scale

@2

re =NArg = o
Clearly, this is the distance at which the Coulomb and thermal
energies become equal, i.e., the distance of closest approach of two
charges. For a weakly coupled plasma we have r. < ryp < rp, and

the plasma parameter, A, controls the separation of these scales.

A typical microscopic time scale in the plasma is the frequency of
low angle scattering of charge carriers
2
T=—~——14/=. So (Twp) =—5 = +~.
v e2 \ e (7e0p) ez A

Another time scale in the plasma is the frequency of large angle
scattering, 7o = rp/v = 7/N. This means that there is a similar
hierarchy of time scales, 7 € 7 < 1/wp.
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il el LT G
Landau damping

Take a generic electromagnetic wave travelling in a plasma with
wavenumber k and frequency w. If there is a charged particle with
velocity v which satisfies k - v = w, then it is resonantly coupled to
the wave because it sees a static field: the particle position is vt,
and the wave has phase (k - v — w)t = 0 at the position of the
particle.

Particles travelling slightly faster than resonance will be
decelerated and lose energy to the wave. Particles travelling slower
will be accelerated, and will gain energy from the wave.

If there are more particles slightly slower than the wave, then they
will damp out the wave. This process is called Landau damping.
This is common because momentum distributions of particles
typically drop with increasing momentum.



Some plasmas

System n T A o
(m~3%) (K) (m)
Interstellar gas | 10°  10* | 2321 2.3x10!
Gaseous nebulae | 108  10* | 1077 2.3x10°
lonosphere | 10*2 103 73 7.3x1073
Solar X
corona | 102 10° | 2321 2.3x107!
atmosphere | 102  10* 11 2.3x10°°
interior | 1033 107 2 23x10711
Lab plasma X
tenuous | 1017  10% 34 7.3x10°°
dense | 1022 10° 16 7.3x10°7
thermonuclear | 1022 108 500 2.3x107°
Metal | 10%° 102 | 0.03 7.3x10°!2
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Nonclassical Quantum mechanics Relativistic plasmas Field theory

Quantum plasmas

In any quantum many-body system at finite temperature there is a
new length scale, rr =1/mv =1/v/m®, called the thermal
wavelength. So there is a new dimensionless variable

n_ro o
rr mv  /mO

This parameter is also important for an ideal quantum gas. Note
also that [e?] = LT, so ® = €?/v = An.

’r]:

The Debye screening length is now a function of both variables,
o = rQ(A, ®).

We are interested in A < 1, as before, but whether or not the
classical computation is valid depends on ®. In order to
understand this, we need to figure out when the classical scattering
formulae stop being valid.



Nonclassical

Diffractive scattering in quantum mechanics

For potentials, V/, which fall faster than Coulomb, at large impact
parameter classical mechanics can be wrong due to diffraction.
The classical scattering angle, 1) ~ mV/(p)/p?, for a particle with
momentum p. The diffraction angle due to a slit of radius a is

g ~ 1/(pa). For classical scattering to be accurate, we must have

¥ > g = 1/(pp).



Nonclassical Quantum mechanics Relativistic plasmas Field theory

Diffraction and quantum plasmas

For a classical plasma the Coulomb potential is essentially
unmodified for p < rp. For classical scattering to be useful in this
region one must have /v = ® > 1. However, the many body
physics of the plasma arises at longer length scales, and one must
have other criteria to decide whether classical physics works there.
At distances comparable with rp, classical scattering works only for

mV(p) 1

> —
P pp

For a Debye screened potential this condition implies
p < rplog ®.

When & > 1, i.e, for large ©, the domain of classical physics
could include rp. At smaller temperatures, quantum effects on
plasmas must be taken into account.



Nonclassical Quantum mechanics Relativistic plasmas Field theory

Relativity

In relativistic plasmas, there is a new energy scale, m. So there is a
new dimensionless number,

v=—
m

This is the usual relativistic Lorentz factor. When v < 1 the
previous classical theory is applicable.

When 7 > 1, the system is ultra-relativistic, and the mass of the
particle is much less than the kinetic energy. Under these
circumstances, it is easy to create and destroy particles. It is
therefore unproductive to examine relativistic classical plasmas. It
is more useful and realistic to examine plasmas within quantum
field theory.



Quantum mechanics Relativistic plasmas Field theory
Quantum field theory

In the quantum field theory of electron-positron plasmas, ©, ry, me
and a = e? are the parameters. Now me/©, r® and « are three
dimensionless parameters in the problem. One should be able to
write n = ©3f(a, me/©). It turns out that n does not have a good
limit as (me/©) — 0, since low-energy electron-positron pairs can
be produced in arbitrarily high numbers. However, the energy
density, ¢ = ©*g(a, m/©) has a good limit € = O%g(a).

Debye screening occurs in such a plasma, and one should be able
to write r; ' = ©p(a, me/©). This has interesting, curable,
infra-red problems in the limit m, < ©.

There is a plasmon in the problem, with dispersion relations shown
before. The plasma frequency, wp, acts like a mass in a relativistic
dispersion relation.
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