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Copyright statement

Copyright for this work remains with Sourendu Gupta. However,
teachers are free to use them in this form in classrooms without
changing the author’s name or this copyright statement. They are
free to paraphrase or extract material for legitimate classroom or
academic use with the usual academic fair use conventions.

If you are a teacher and use this material in your classes, I would
be very happy to hear of your experience.

This material may not be sold or exchanged for service, or
incorporated into other media which is sold or exchanged for
service.

This material may not be free of errors.
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The experimental setup

The simplest setup for studying convection would be fluid
contained within two walls— the lower one at temperature T0 and
the upper one at T0 + dT (we need not assume that dT is
positive). The distance between these walls is H.
Heat is transferred in two ways. One is by conduction. Fourier’s
law for heat conduction states that the flux of heat, q, is given by

q = −λ
dT

H
,

where λ is called the heat conductivity. The heat flux is the heat
that passes through a unit area in unit time. The second method is
by convection. Materials become lighter on being heated, and rise
against gravity, carrying the heat stored in the material. This latter
depends on the specific heat, c , defined as the increase in the heat
content of a material per unit mass per degree rise in temperature.
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Other relevant variables

Heated fluids rise against gravity since the density decreases with
increase in temperature. If dT is small, then one can apply
Boussinesq’s approximation. This states that the buoyancy will be
αg , where α is the fractional increase in volume per degree rise in
temperature and g is the acceleration due to gravity. One also
needs the density of the fluid, ρ, measured at temperature T0.
Since the fluid is moving, its viscosity, η, at the temperature T0,
may play a role in the problem. Newton’s experiment utilizes the
same setup to measure viscosity, by measuring the strain (force per
unit area), τ required to move the upper plate at a constant
velocity, U, against the fluid. Then, one has

τ = η
U

H
,

We will use units with Joule’s constant, J = 1, and Boltzmann’s
constant, kB = 1.
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Dimensions

The dimensions needed are the usual mechanical quantities M, L,
T . The units of heat and temperature are taken to be those of
energy. From the definitions

[H] = L, [ρ] = ML−3, [η] = ML−1T−1, [dT ] = ML2T−2.

The new thermal quantities are

[αg ] = M−1L−1, [c] = M−1, [λ] = LT−1.

With 7 quantities and 3 different dimensions, one will have 4
independent dimensionless quantities. One is a trivial comparison
between energy scales of temperature and heat:

Π4 = cρH3.

It turns out that r = 1/(cρ)1/3 is about 0.15 nm for water. So
Π4 ≪ 1 in all experimental situations.
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Dimensionless quantities

The dimensionless Prandtl number can be built purely from the
material properties of the fluid—

Π3 = Pr =
ηc

λ
.

Another dimensionless number is the ratio of two lengths

Π2 =
c

αgH
=

ℓ

H
where ℓ =

c

αg
.

The length scale ℓ characterizes the fluid. For water, we find
ℓ = 2000 Km. The third dimensionless quantity is the Raleigh
number

Π1 = Ra =
αgcρ2dTH3

ηλ
.

The solution of the problem is a relation Π1 = f (Π2,Π3,Π4).
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Similarity flow

Since ℓ/r ≃ 1015, one has a large range of H for which Π2 ≫ 1
and Π4 ≪ 1. Now f (∞,Π3, 0) could either increase without bound
or tend to a constant. If we take f (∞,Π3, 0) = f (Π3), then we
have postulated a similarity flow. The nomenclature comes from
the fact Π1 is then fixed for a given liquid, and a result, flows for
different H are geometrically similar with dT ∝ 1/H3. This is a
very strong assumption, and may not be justified in many cases
(experimental evidence tells us that it works here).

Ra is the ratio of two forces: one is the buoyant force ραgdTH3,
and the other a frictional force ηλ/(cρ) = η2/(ρPr). For Ra < Rc

there is no convection; viscous friction wins. For Ra > Rc ,
buoyancy wins, convection sets in and cells of oppositely
circulating fluid are created. Rc ≃ 650 when the lower surface of
the fluid is in contact with a rigid surface, and the upper surface is
free. Our analysis has not touched on the size of cells.
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Perimeters and polygons

r

d

The arc length of a curve, L, whose ends are a distance r apart,
can be approximated by a segment of a polygon with sides of
length, d . A dimensional argument tells us that

L(r) = r lim
d→0

Φ
( r

d

)

,

since one gets successively better approximations to the curve by
decreasing the size of the edge of the approximating polygon.
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Similarity and incomplete similarity

In the limit Π = r/d goes to infinity. A similarity hypothesis is that
Φ(∞) has a good limit. For example, for a semicircle,
Φ(∞) = π/2. These are simple curves described by functions
which are smooth, with continuous first derivatives.
However, for most curves the limit does not exist. For a larger
class of these curves a fairly simple hypothesis called incomplete
scaling may hold. This is the assumption that Φ(Π) = Πα, where
α is a positive number. In this case L(r) ∝ r1+α, although the
limit does not exist. The curve is called a fractal; α is called an
anomalous dimension and D = 1 + α is called a fractal dimension.

Fractals have broken scale invariance

For fractals the unit of the measuring scale, d , leaves a trace.
Invariance with respect to d is broken, and this quantity does not
disappear from the formula. This is the origin of the anomalous
dimension.
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The Koch curve

The set of fractals is not empty!
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Dimensional analysis and homogenous functions

Recall how dimensional analysis involves homogenous functions. In
a physical problem list all the n variables of interest, choose the
basis set of m of them, U1, U2, · · · , Um, and write the others as
A1, A2, · · · , Ak , where k +m = n. Then a physical relation will be

A1 = F (U1,U2, · · · ,Um,A2,A3, · · · ,Ak).

One can construct k dimensionless quantities, Πi = Ai/
∏

U
aij
j . In

terms of these one can write the same relation as

A1 = Ua11
1 Ua12

2 · · ·Ua1m
m f

(

A2

Ua21
1 Ua22

2 · · ·Ua2m
m

, · · ·
Ak

U
ak1
1 U

ak2
2 · · ·U

akm
m

)

,

or, more compactly as,

Π1 = f (Π2,Π3, · · · ,Πk).
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Scale transformations: the relativity of measurements

The function under study

A1 = F (U1,U2, · · · ,Um,A2,A3, · · · ,Ak),

has a necessary invariance under scale transformations of units

Ui = λiUi , for 1 ≤ i ≤ m, Aj =

[

m
∏

i=1

λ
aji
i

]

Aj .

These transformations form a group because

1. all non-negative values of λi are allowed (closure),

2. λi = 1 is an allowed transformation (existence of unity),

3. for any λi the inverse scaling 1/λi is allowed (unique inverse),

4. and a sequence of scalings can be composed in any way
(associativity).

The Πi are invariants of this group. Dimensional analysis expresses
the covariance of physical equations under this group.
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Similarity and incomplete similarity

The function f is said to possess similarity if it has a finite and
non-zero limit as any one of these Πi go to zero or infinity. Then,
in that limit, the functional dependence can be dropped to give

Π1 = f (Π2,Π3, · · · ,Πk−1) Πk → ∞.

Since the labelling of the variables is immaterial, in the case when
k − ℓ of the dependences can be dropped we write

Π1 = f (Π2,Π3, · · · ,Πℓ) Πi → ∞ ∀i > ℓ.

Clearly this is a very special class of functions. In general no
simplification can occur. However, there is a wider class which has
the property of incomplete similarity

Π1 =

[

∏

i>ℓ

Πα1i

i

]

g

(

Π2
∏

i>ℓ Π
α2i

i

, · · · ,
Πℓ

∏

i>ℓ Π
αℓi

i

)

.

The exponents αji are called anomalous dimensions.
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Incomplete similarity

Incomplete symmetry also involves homogeneous functions and can
be written in terms of renormalized variables, Π∗

j = Πj/
∏

i>ℓ Π
αji

i ,
as

Π∗

1 = g(Π∗

2,Π
∗

3, · · · ,Π
∗

ℓ).

Note that similarity is included within incomplete similarity as the
special case when all αij = 0.

We saw earlier that the tool for developing dimensional analysis is
the invariance of physics under scaling of units of measurement.
The tool for investigating incomplete symmetry is also such
scaling, restricted to the domain where some of the dimensionless
parameters become large or small. This analysis is called a
renormalization group analysis.

Finally, note that there are many functions f which do not allow
compression of variables beyond ordinary dimensional analysis.
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Renormalization group transformations

The renormalization group arises if there is a scale invariance of
the form

Πi = ξiΠi for ℓ+ 1 ≤ i ≤ k

Πj =

[

∏

i>ℓ

ξ
αji

i

]

Πi for 1 ≤ j ≤ ℓ.

Since this is supposed to hold only for very large or very small
values of Πi (with i > ℓ), the range of ξi is restricted to be not
very different from 1. The proof that this leads to incomplete
similarity follows the same lines as dimensional analysis.

These transformations satisfy the existence of unity, unique inverse
and associativity. However, the restriction that ξi be not very large
or small tells us that the property of closure is not satisfied. So the
renormalization group is, almost but not quite, a group.
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What dimensional analysis leads to

Only dimensional analysis: can be used to discover new phenomena

Incomplete scaling and the renormalization group: can be used for partial solution

Scaling: full solution
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Counting dimensions in dynamics

In relativistic quantum theory there is only the dimension of mass,
so it is possible to associate with every physical quantity, φ, a
single number called its dimension, d , such that [φ] = Md .

Spacetime coordinates have dimension −1. Momenta have
dimension 1. As a result, phase space volume has dimension 0, so
action also has dimension 0. Langrangian densities, L, therefore
have dimension 4.

A theory of a relativistic scalar field, φ, must have a term in L of
the form m2φ2. So clearly, φ has dimension 1. The kinetic term
has to be ∂µφ∂

µφ, and this also gives the same dimension to the
field. A relativistic Dirac field, ψ, has a mass term mψψ, so ψ has
dimension 3/2. For a gauge field Aµ one has the field strength
Fµν = ∂µAν − ∂nuAµ, and the action FµνF

µν . So Aµ has
dimension 1.
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Power counting of processes

Processes are classified by the number of external states they
contain. This also happens to count the dimensions of the
quantum amplitude. If there are F fermions and B bosons in a
process (say F/2 fermions in the initial and final states, 0 bosons
in the initial state and B in the final state), then the amplitude for
the process contains F Dirac fields and B boson fields. As a result,
the dimension of the process is 3F/2 + B .

In Compton scattering, one has initially 1 electron and 1 photon,
and finally also 1 electron and 1 photon. So F = 2 and B = 2.
The dimension of the amplitude is 5. Electron-positron
annihilation also has F = 2 and B = 2, so its amplitude also has
dimension 5. In Bhabha scattering, one has F = 4 and B = 0, so
the amplitude has dimension 6.
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Scale invariance

If we write the amplitude for a process as Γ(α,me ,Q), where α is
the fine structure constant, me the electron’s mass, and Q the
typical momentum scale in the process, then dimensional analysis
tells us that

Γ(α,me ,Q) = Q3F/2+BΓ

(

α,
me

Q

)

.

If me = 0, then there is no intrinsic scale to the problem and the
theory could be scale invariant.

Recall the usual arguments behind dimensional analysis. Since
there is only one dimension, scale all quantities by powers of a
single parameter λ. Scale Q → λQ. Distances and times scale as
1/λ. Scalar and gauge fields scale as λ and fermion fields as λ3/2,
whereas α does not scale. This scaling is taken care of in the
above formula.
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Example of Compton scattering

e

γ

Many momenta: Q1, Q2, Q3, etc.. Completely computable. Set all
momenta Qi ≃ Q; take limit me → 0 perfectly fine. Scale invariant
theory.
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Breaking of scale invariance

However, there are two kinds of scale breaking in these theories:
one is through divergences which arise when me = 0 and Q → 0.
These are called infrared divergences. The other kind occurs for
any me when Q → ∞. These are called ultraviolet divergences.
We met one of these in the ultraviolet catastrophe of black body
radiation. In either case Γ(α, 0) does not have a good limit.

e

γ

A divergence arising from the sum over all possible states.
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Incomplete similarity

The ultraviolet catastrophe of the black body spectrum went away
as soon as we introduced a new constant relating two different
dimensions (~). We not longer have this freedom. The only way to
take care of this is to introduce an ultraviolet cutoff Λ.

However, if there is a new scale in the problem, Λ, then one must
replace the scaling formula by

Γ(α,me ,Q,Λ) = Q3F/2+BΓ

(

α,
me

Λ
,
Q

Λ

)

.

Could we expect quantum field theories to have incomplete
similarity in the limit Q/Λ → ∞? Why incomplete similarity and
not similarity?

Probe an electron with photons of momentum Q; what phenomena
do we see as we increase Q? Increase of Q decreases wavelength
and therefore reveals more structure. Is an electron structureless?
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Stückelberg-Petermann-Gell-Mann-Low-Callan-Symanzik

Renormalizable field theories are those which have incomplete
scaling. For these theories we can define renormalized quantities,
α∗ = α(Q/Λ)β and m∗

e = me(Q/Λ)
γ in terms of which one can

write

Γ(α,me ,Q,Λ) = Q3F/2+B+ηΓ

(

α∗,
m∗

e

Λ

)

.

We have the renormalization group equations

dα∗

d logQ
= βα∗, and

dm∗

e

d logQ
= γm∗

e .

Which parameters of the theory do β and γ depend on? Since they
are independent of Q and Λ, they cannot depend on me , by a
dimensional argument. Therefore, β and γ can depend only on α.
One can compute them from the usual perturbation series.
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