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The isotropic two-dimensional harmonic oscillator

The energy eigenvalues and eigenvectors

The isotropic harmonic oscillator in two dimensions is specified by the two position
variables x1 and x2 and the two conjugate momenta p1 and p2. Isotropy implies
that the angular frequency, ω is the same in all directions. Then introducing the
scaled quantities Xi = xi

√

mω/~ and Pi = pi/
√

mω~, one has the Hamiltonian

H =
~ω

2
(P2

1 + P2
2 + X 2

1 + X 2
2 ).

Introducing the shift operators aj = (Xj + iPj)/
√

2 and their Hermitean

conjugates, a
†
j , as before, one can show that H can be written in terms of two

number operators Nj = a
†
j aj in the form

H = ~ω[(N1 + 1/2) + (N2 + 1/2)].

The energy eigenstates can be specified in the form |n1, n2〉 where ni are the

eigenfunctions of Ni . The energies of these states are E = ~ω(n1 + n2 + 1). Each

eigenvalue is (N + 1)-fold degenerate. Therefore there is a larger symmetry in the

problem.
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The isotropic two-dimensional harmonic oscillator

Extended symmetry

If one changes n1 and n2 simultaneously, while keeping the sum then the
energy does not change. An operator of the form a

†
1a2 does exactly this.

The two Hermitean operators

s1 = a
†
1a2 + a

†
2a1 and s2 = ia

†
1a2 − ia

†
2a1

act on |N, n1〉 to produce linear combinations of |N, n1 − 1〉 and
|N, n1 + 1〉. So one must have [H, s1] = 0 = [H, s2]. (check). The
combinations s0 = N1 + N2, s1, s2 and s3 = N1 − N2 have the
commutation relations of the Pauli matrices. (Check that in the
subspace of E = 2~ω these operators are exactly the Pauli matrices).
When acting in the eigenspace of larger values of E , the operators are
represented by larger matrices. (Compute the operator
S2 = s2

1 + s2
2 + s2

3 in the degenerate subspace of any E . Also
compute the matrix representation of s3 in this subspace.)
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The isotropic two-dimensional harmonic oscillator

The symmetry group SU(2)

An arbitrary (new) linear combination of the degenerate eigenstates of the
isotropic two-dimensional harmonic oscillator is generated by the unitary

matrix U = exp
(

i
∑

j θjsj

)

. Note that Det U = 1 (because the trace of its

logarithm is zero). Since these linear combinations all have the same
energy, all these U must commute with the Hamiltonian.
In particular, this is true of the two-dimensional subspace with N = 1. All
2 × 2 unitary matrices with unit determinant form a group. This is called
the group SU(2). Since all these matrices commute with H, the
symmetry group of this problem is SU(2). The higher dimensional
matrices generated by the above prescription do not exhaust all possible
unitary matrices of that size, but a subgroup which is isomorphic to SU(2).
These matrices of different sizes are called different representations of
SU(2). The trace of S2 in each representation is characteristic of that
representation. The Hermitean operators s1, s2 and s3 are called the
generators of SU(2), or elements of the algebra su(2).
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The isotropic two-dimensional harmonic oscillator

A problem

Consider the isotropic harmonic oscillator in three dimensions. In analogy
with the construction we have presented here, find the complete group of
symmetries of this problem: it is called SU(3).

1 Construct the complete algebra of operators from Hermitean
combinations of the bilinears of the shift operators which leave the
energy unchanged.

2 Find the commutators of these operators, and construct the
completion of this algebra. How many operators are there in the
algebra?

3 Find a complete set of commuting operators among these.

4 In the degenerate space of eigenstates corresponding to the energy
eigenvalue E = 5~ω/2, construct the representations of the elements
of the algebra.

5 Construct the representation of the algebra in the space of energy
eigenstates with eigenvalue E = 7~ω/2.
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Supersymmetry in quantum mechanics

Extended raising and lowering operators

Extend the notion of raising and lowering operators to

A± = ± ip√
2m

+ W (x), A
†
− = A+ if W (x) is real.

H± = A±A∓ =
p2

2m
+ V±(x) where V±(x) = W 2 ± ~√

2m

dW

dx
.

The last equation is called the Ricatti equation. If one finds a solvable
Hamiltonian, then one can check whether this is one of a pair of solutions
of the Ricatti equation.
If H− has a discrete spectrum, H−|ψ−

N 〉 = E−
N |ψ−

N 〉, for N = 0, 1, 2 · · · ,
then one can prove (as for the harmonic oscillator) that E−

N ≥ 0. Also, if
A+|ψ−

0 〉 = 0, then E−
0 = 0 and

[

W (x) +
~√
2m

d

dx

]

ψ−
0 (x) = 0, ie, ψ−

0 (x) ∝ exp

(

−
√

2m

~

∫

W (x)dx

)

.
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Supersymmetry in quantum mechanics

Solving for H+ given a solved H−

The eigenfunctions H+|ψ+
N 〉 = E+

N |ψ+
N 〉 can be related to those of H−

using the shift operators. Note that

H+A+|ψ−
N 〉 = A+H−|ψ−

N 〉 = E−
N A+|ψ−

N 〉, so A+|ψ−
N 〉 =

√

E−
N |ψ+

N−1
〉.

The proportionality constant can be found by taking the norm of both
sides in the last equation. Similarly, one finds that

A−|ψ+
N 〉 =

√

E+
N |ψ−

N+1
〉, hence E+

N = E−
N+1

.

E

E

0

1

2

E

_

_

_

E 1
+

E
+
0

A

A

A

A +

+
−

−
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Supersymmetry in quantum mechanics

Supersymmetry

Given the degeneracy of all except one state of the Hamiltonian

Hs =

(

H− 0
0 H+

)

=
p2

2m
+ W 2(x) − ~√

2m

dW

dx
σ3,

one expects some new symmetry of this extended Hamiltonian. Introduce
the operators and states

Q =

(

0 0
A+ 0

)

, Q† =

(

0 A−

0 0

)

, |N〉− =

(

|ψ−
N 〉
0

)

, |N〉+ =

(

0
|ψ+

N 〉

)

,

where |N〉± are the eigenstates of Hs and Q and Q† are exhibited in this
basis. Clearly Hs = {Q†,Q}, and

Q2 = 0 = (Q†)2, [Q,Hs ] = 0 = [Q†,Hs ].

Hs is called the supersymmetric Hamiltonian, Q and Q† are called
supersymmetry charges and W is called the superpotential. Note that
Q = A+σ−/2 where σ− = σ1 − iσ2.
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Supersymmetry in quantum mechanics

An example

Take W (x) = ωx
√

m/2. Then

Hs =

(

Hho − ~ω/2 0
0 Hho + ~ω/2

)

.

The state at E = 0 is a singlet. Every other state
is a doublet. This Hamiltonian is obtained by
taking a harmonic oscillator potential Hho , and
filling each of its levels with an electron. Each
state is doubly degenerate because of the two
spin states of the electron. Then if one switches
on a small magnetic field, the degeneracy is
broken. By tuning the field appropriately, one can
send the lowest energy level to zero, and make
the remaining states doubly degenerate again. HO HO+B SUSY
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Supersymmetry in quantum mechanics

Other solvable potentials

1 The Morse potential is

V (x) = D
{

e
−2x/a − 2e

−x/a
}

.

2 The Rosen-Morse potential

V (x) = −U0sech
2 x

a
+ U1 tanh

x

a
.

3 The first Pöschl-Teller potential is

V (x) =
~

2

2ma2

{

µ(µ− 1)

sin2(x/a)
+

λ(λ− 1)

cos2(x/a)

}

.

4 The second Pöschl-Teller potential

V (x) =
~

2

2ma2

{

µ(µ− 1)

sinh2(x/a)
+

λ(λ− 1)

cosh2(x/a)

}

.

5 The supersymmetric partner of a given H− is not unique; hence
corresponding to each solvable potential, many others can be found.
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Diagonalizing matrices: symmetries for profit

A permutation symmetric matrix

Consider the matrix

M =





1 2 3
2 1 3
3 3 4



 .

It has the property that permuting the first two rows and columns
simultaneously does not change the matrix. Hence, [M,P12] = 0 where
P12 is the matrix that permutes the first two elements of a vector and
leaves the third unchanged. Now P12 generates a Z2 group. However, this
is a subgroup of the group of permutations of 3 objects, a group called S3.
What are the other matrices in S3 which commute with P12?
Once all the real symmetric 3 × 3 matrices, Si , which commute with P12,
are found, one could write M =

∑

i miSi . Then diagonalizing the Si and
P12 simultaneously, one can diagonalize all matrices such as M.
Alternately, one takes the vector (1, 1, 0)T . Since this is an eigenvector of
P12, it must also be of M. Since M is real symmetric, its eigenvectors are
real and orthogonal. Hence (1,−1, 0)T and (0, 0, 1)T are two others.
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Diagonalizing matrices: symmetries for profit

A non-invertible matrix

Consider the two matrices

M =





1 2 3
2 1 3
3 3 4



 , N =





2 2 3
2 2 3
3 3 4



 .

It seems that the matrix N has higher symmetry than M. However, the
obvious symmetries of both are exactly the Z2 group generated by P12.
Using the method used for M, we find that the three eigenvectors can be
chosen as |+〉 = (1, 1, 0)T , |−〉 = (1,−1, 0)T and |3〉 = (0, 0, 1)T . Since
|+〉 and |3〉 have equal eigenvalues, we have missed a symmetry.
|−〉 has eigenvalue zero. The vanishing of an eigenvalue is also clear from
the fact that two rows of N are equal, so that Det N = 0. Since any
|ψ〉 = ψ+|+〉 + ψ−|−〉 + ψ3|3〉, clearly |φ〉 = N|ψ〉 = 4(ψ+|+〉 + ψ3|3〉).
Any component of |−〉 vanishes. Thus, any trial N−1 cannot decide how
much of ψ− to add back to N−1|φ〉. So there is no N−1. For vectors with
ψ− = 0 there is a perfectly sensible inverse.
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Diagonalizing matrices: symmetries for profit

The geometry of non-invertible matrices

|ψ>

|ω>

Ν|ψ>=Ν|ω>|+>

|3>

|−>

When the matrix is not invertible, many vectors project down to the same
result. Given the projection, it is impossible to decide which vector it cam
from. This is the same as saying that the set of simultaneous equations
N|ψ〉 = |φ〉 cannot be solved. However, if one knows that the component
ψ− = 0, then the solution is straightforward.
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Diagonalizing matrices: symmetries for profit

Degenerate eigenvalues

If an N × N matrix, M, has degenerate eigenvalues corresponding to two
choices of eigenvectors |1〉 and |2〉, then there is a permutation symmetry
P12 between these. We have treated this as the discrete group Z2.
However, in this 2 × 2 space, P12 = σ1, which is a Hermitean matrix.
Hence exp(iθP12) is unitary. In fact, all matrices of this form constitute an
Abelian group. This is the unitary group U(1).
Actually the symmetry group is even larger, since any unitary
transformation of a vector in the space spanned by |1〉 and |2〉 commutes
with M. This is the group U(2). If the applications are to quantum
mechanics, where overall phases are unimportant, then one needs only the
subgroup SU(2).
The cases of 3 or more degenerate eigenvalues are less common in general,
but their analysis parallels this discussion.
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1 Practical Quantum Mechanics, by S. Flugge. This book solves many
of the older known solvable potential problems before supersymmetry
was discovered. Take a look at the solutions of the Morse and
Rosen-Morse potentials for later use.

2 Classical groups for Physicists, by B. G. Wybourne. This book is
highly recommended for a good exposition on Lie groups.

3 The article by M. Harvey in the book Advances in Nuclear Physics,
vol 1 (Plenum Press, New York) discussed the Elliott Model, which is
an application of the SU(3) symmetry of the three dimensional
harmonic oscillator to problems in nuclear physics.

4 A nice introduction to supersymmetric quantum mechanics is in the
paper by R. Dutt, A. Khare and U. P. Sukhatme, “Supersymmetry,
shape invariance and exactly solvable potentials”, American Journal

of Physics, 56 (1988), 163–168.
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