Representations of angular momentum

Sourendu Gupta

TIFR Graduate School

Quantum Mechanics 1 September 26, 2008 Some definitions

2 The simplest example: summing two momenta

3 Interesting physics: summing angular momenta

References

- Some definitions
- 2 The simplest example: summing two momenta
- 3 Interesting physics: summing angular momenta
- 4 References

Kinds of representations

For any set of Hermitean operators, H_i , consider the algebra $[H_i, H_j] = f_{ijk}H_k$. Using these H_i , we construct a maximum set of commuting operators. Given any matrix representation of the H_i , we find the basis which diagonalizes the maximum commuting set. In this basis the remaining operators are block-diagonal. As a result, exponentials such as $U = \exp(iu_i H_i)$ are also block diagonal.

A matrix representation of all the H_i which cannot all be reduced to smaller blocks is called an **irreducible representation**. All other representations can be reduced to smaller blocks by unitary transformations and are therefore called **reducible representations**.

Example: In the **scalar** (or trivial) representation, we can set all $H_i = 0$. The group generated by exponentiating, $U = \exp(iu_j H_j)$, is then represented by U = 1 for all U. The trivial representation of any group is an irreducible representation of any group.

Example: The representation of **J** by the Pauli matrices gives rise to an irreducible representation of the group of rotations.

Building things up and breaking them down

We will build representations of larger *j* through direct products (also called tensor products) of lower representations. A direct product of two matrices N and M is the matrix

$$N \otimes M = \begin{pmatrix} n_{11}M & n_{12}M & n_{13}M & \cdots \\ n_{21}M & n_{22}M & n_{23}M & \cdots \\ n_{31}M & n_{32}M & n_{33}M & \cdots \\ \vdots & \vdots & \vdots & \cdots \end{pmatrix}.$$

The dimension of $N \otimes M$ is the product of the dimensions of each matrix. In general, $N \otimes M \neq M \otimes N$. Direct products of vectors follow from this definition. A direct sum of two matrices $N \oplus M$ is the block diagonal form

$$N \oplus M = \begin{pmatrix} N & 0 \\ 0 & M \end{pmatrix}.$$

The dimension of the direct sum is the sum of the dimensions of each matrix. We will now try to reduce direct products into direct sums.

- Some definitions
- 2 The simplest example: summing two momenta
- 3 Interesting physics: summing angular momenta
- 4 References

Summing two momenta

If $|\mathbf{k}_1\rangle$ is the basis state of one particle and $|\mathbf{k}_2\rangle$ of another, then the direct product state $|\mathbf{k}_1;\mathbf{k}_2\rangle=|\mathbf{k}_1\rangle\otimes|\mathbf{k}_2\rangle$. The operator $\mathbf{p}_1=\mathbf{p}\otimes 1$ acts only on the Hilbert state of the first particle, and the operator $\mathbf{p}_2=1\times\mathbf{p}$ on the second. These operators commute since they act on different Hilbert spaces. The total momentum $\mathbf{P}=\mathbf{p}_1+\mathbf{p}_2$.

Since all representations which we have built are one-dimensional, the direct product state is also one dimensional. One has

$$\textbf{P}|\textbf{k}_1;\textbf{k}_2\rangle = \left(\textbf{p}_1 + \textbf{p}_2\right)|\textbf{k}_1;\textbf{k}_2\rangle = \left(\textbf{k}_1 + \textbf{k}_2\right)|\textbf{k}_1;\textbf{k}_2\rangle.$$

Therefore, the direct product state is the representation with momentum equal to the sum of the two momenta:

$$|\mathbf{k}_1\rangle\otimes|\mathbf{k}_2\rangle=|\mathbf{k}_1+\mathbf{k}_2\rangle.$$

This is a fairly trivial example of direct product spaces. The case of direct products of angular momentum states is significantly different.

- Some definitions
- 2 The simplest example: summing two momenta
- Interesting physics: summing angular momenta
- 4 References

Summing two spins: counting dimensions

If $|j_1,m_1\rangle$ is the basis states of one particle, and $|j_2,m_2\rangle$ of another, then the direct product $|j_1,m_1\rangle\otimes|j_2,m_2\rangle=|j_1,m_1;j_2,m_2\rangle$. The operator $\mathbf{J}^{(1)}=\mathbf{j}\otimes 1$, *i.e.*, the operator for the first particle acts only on the Hilbert space of the first particle. Similarly, $\mathbf{J}^{(2)}=1\otimes\mathbf{j}$. All components of these two operators commute, since they act on different spaces. The total angular momentum of the system is $\mathbf{J}=\mathbf{J}^{(1)}+\mathbf{J}^{(2)}$. But

$$J^{2}|j_{1},m_{1};j_{2},m_{2}\rangle\neq(j_{1}+j_{2})(j_{1}+j_{2}+1)\hbar^{2}|j_{1},m_{1};j_{2},m_{2}\rangle.$$

This is because the dimension of the direct product is $(2j_1 + 1)(2j_2 + 1)$ and this is not equal to $(2j_1 + 2j_2 + 1)$ unless either j_1 or j_2 (or both) is zero.

Example: The direct product of two j=1/2 particles has dimension 4. This is either a j=3/2 representation (which has dimension 4) or a direct sum of a j=0 (dimension 1) and a j=1 (dimension 3) representation. If the direct product can be reduced to a direct sum, then **all** components of **J** can be block diagonalized in this fashion.

Summing two spins: the spectrum of J_{z}

By the definition of the direct product, one has

$$J_{z}^{1} = \begin{pmatrix} \hbar m_{1}I & 0 & 0 & \cdots & \\ 0 & \hbar m_{2}I & 0 & \cdots & \\ 0 & 0 & \hbar m_{3}I & \cdots & \\ \vdots & \vdots & \vdots & \cdots \end{pmatrix}, \qquad J_{z}^{2} = \begin{pmatrix} j_{z} & 0 & 0 & \cdots & \\ 0 & j_{z} & 0 & \cdots & \\ 0 & 0 & j_{z} & \cdots & \\ \vdots & \vdots & \vdots & \cdots & \end{pmatrix}.$$

This remains diagonal. As a result, the quantum number M corresponding to the total J_7 is the sum $m_1 + m_2$. In other words

$$J_z|j_1,m_1;j_2,m_2\rangle=(m_1+m_2)\hbar|j_1,m_1;j_2,m_2\rangle.$$

Example: For the direct product of two j = 1/2 particles, the possible values of M are 1, -1, and 0 (twice). As a result, this direct product cannot be the representation i = 3/2. Therefore

$$\frac{1}{2}\otimes\frac{1}{2}=0\oplus 1.$$

A problem: summing two spins

Using the definition of the direct product for $|1/2, m_1; 1/2, m_2\rangle$, one has

Use this to find J^2 and check how to diagonalize it while keeping J_z diagonal. Using these results, show that

$$|1,0\rangle = \frac{1}{\sqrt{2}} \left(\left| \frac{1}{2}, \frac{1}{2}; \frac{1}{2}, -\frac{1}{2} \right\rangle + \left| \frac{1}{2}, -\frac{1}{2}; \frac{1}{2}, \frac{1}{2} \right\rangle \right),$$

$$|0,0\rangle = \frac{1}{\sqrt{2}} \left(\left| \frac{1}{2}, \frac{1}{2}; \frac{1}{2}, -\frac{1}{2} \right\rangle - \left| \frac{1}{2}, -\frac{1}{2}; \frac{1}{2}, \frac{1}{2} \right\rangle \right).$$

Find the matrices corresponding to $\bf J$ in the j=1 representation.

Summing two spins: the Clebsch-Gordan series

By the argument just presented, the states $|j,m;1/2,m'\rangle$ can have total M ranging from (j+1/2) to -(j+1/2). The extreme eigenvalues are single, every other eigenvalue occurs twice. As a result,

$$j \otimes \frac{1}{2} = \left(j + \frac{1}{2}\right) \oplus \left(j - \frac{1}{2}\right).$$

By an inductive argument one can prove that the direct product states $|j_1, m_1; j_2, m_2\rangle$ can be decomposed as

$$j_1 \otimes j_2 = (j_1 + j_2) \oplus (j_1 + j_2 - 1) \oplus \cdots \oplus (j_1 - j_2),$$

where each J occurs only once. The reduction of a direct product to direct sums of terms is called the **Clebsch-Gordan series**. In the CG series any value of $M=m_1+m_2$, except the extremes, are degenerate. An unitary transformation among the various $|j_1,m_1;j_2,M-m_1\rangle$ is required to produce the angular momentum eigenstates $|J,M\rangle$. The unitary matrix is $|J,M\rangle\langle j_1,m_1;j_2,m_2|$. The matrix elements are called **Clebsch-Gordan coefficients**.

Examples of Clebsch-Gordan coefficients

The trivial CG coefficients are

$$\langle j_1 + j_2, j_1 + j_2 | j_1, j_1; j_2, j_2 \rangle = 1.$$

One can in general write this as $\exp(i\psi)$ for some real ψ . The choice of ψ has to be compatible with the phase choices for the angular momentum eigenstates.

② In the problem of the coupling of two spin 1/2 particles, the unitary transformation that rotates from the eigenbasis of the two uncoupled spins to the eigenbasis of the coupled spins is

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix}.$$

The CG coefficients $\langle 1,1|1/2,1/2;1/2,1/2\rangle$, $\langle 1,-1|1/2,-1/2;1/2,-1/2\rangle$, $\langle 1,0|1/2,m;1/2,-m\rangle$, $\langle 0,0|1/2,m;1/2,-m\rangle$ can be read off this matrix.

- Some definitions
- The simplest example: summing two momenta
- 3 Interesting physics: summing angular momenta
- 4 References

References

- Quantum Mechanics (Non-relativistic theory), by L. D. Landau and E. M. Lifschitz. The material in this lecture are scattered through chapters 4, 8 and 14 of this book.
- Quantum Mechanics (Vol 1), C. Cohen-Tannoudji, B. Diu and F. Laloë. Chapter 6 of this book discusses angular momentum. The presentation in these lectures follow this chapter sometimes.
- Quantum Mechanics (Vol 2), C. Cohen-Tannoudji, B. Diu and F. Laloë. Chapters 9 and 10 of this book discuss angular momentum.
- Classical groups for Physicists, by B. G. Wybourne. This book is highly recommended for a good exposition on Lie groups.
- A Handbook of Mathematical Functions, by M. Abramowicz and I. A. Stegun. This is a handy place to look up useful things about various classes of functions.

