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Orbital angular momentum

Spherical harmonics

We construct the operators and the eigenfunctions of orbital angular
momentum, L = r × p, in the Hilbert space of position eigenstates. Then
the usual differential operator for p can be used. Under the scaling r → ξr,
one has p → p/ξ, so that L is independent of the scale of the radius, ξ.
Hence in this problem one can set |r| = 1, i.e., use the unit vector r̂. We
will use r̂z = cos θ and r̂± = r̂x ± i r̂y = exp(±iφ) sin θ.
The spherical harmonics are defined as

Y l
m(r̂) = 〈r̂|lm〉, L2Y l

m(r̂) = ~
2l(l + 1)Y l

m(r̂), LzY
l
m(r̂) = ~mY l

m(r̂).

These have completeness and orthonormality

|lm〉 =

∫

dΩ|̂r〉〈r̂|lm〉,
∫

dΩ[Y l ′

m′(r̂)]∗Y l
m(r̂) = δll ′δmm′ .

Since Y l
m(θ, φ) = Y l

m(θ, φ + 2π), one has integer values of m, and hence
also of l .
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Orbital angular momentum

The highest weight eigenfunction

We use the raising and lowering operators

L± = ±~z

(

∂

∂x
± i

∂

∂y

)

∓ ~(x ± iy)
∂

∂z
.

The scalar representation must have LiY
0
0 = 0, i.e., Y 0

0 must be a
constant. The normalization condition gives Y 0

0 = 1/
√

4π. Since r̂ is a
vector operator, one has

Y l
±l ∝ r l

±Y 0
0 = cl(r̂x ± i r̂y )l = cle

±il(sin θ)l .

The normalization condition is

1 = |cl |2
∫

dφd(cos θ)

4π
(sin θ)2l = |cl |2

1

2

∫ 1

−1

dz(1 − z2)l .

A recursion can be used to evaluate the integral. The normalized function
is

Y l
l (θ, φ) =

1

2l l!

√

(2l + 1)!

4π
(sin θ)leilφ.
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Orbital angular momentum

Using the ladder

Note that

∂f (r̂z)

∂xi

=
1

r3
(−xiz + r2δi3)

df (r̂z)

dr̂z
, hence L−f (r̂z) = ~r̂−

df (r̂z)

dr̂z
.

Also, note that [L,r̂−] = 0. Now starting from

r̂ l
−Y l

l = cl(1 − r̂z)
l , one finds r̂ l

−LN
−Y l

l = cl(~r̂N
− )

dN

dr̂N
z

(1 − r̂z)
l ,

by applying LN
− on both sides. Then, since

LN
−Y l

l = ~
N

√

(2l)!N!

(2l − N)!
Y l

l−N ,

one finds all the spherical harmonics by the above recursion. This can also
be done starting from the lowest weight representation and using LN

+.
Comparing these two gives

Y l
m(−r̂) = (−1)lY l

m(r̂), Y l
−m(r̂) = (−1)m[Y l

m(r̂)]∗.
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Orbital angular momentum

Some spherical harmonics

Y 0
0

1√
4π

Y 1
±1

√

(

3
8π

)

e±iφ sin θ
√

(

3
8π

)

(x ± iy)

Y 1
0

√

(

3
4π

)

cos θ
√

(

3
4π

)

z

Y 2
±2

√

(

15
32π

)

e±2iφ sin2 θ
√

(

15
32π

)

(x2 ± iy2)

Y 2
±1 ∓

√

(

15
8π

)

e±iφ sin θ cos θ ∓
√

(

15
8π

)

z(x ± iy)

Y 2
0

√

(

15
16π

)

(3 cos2 θ − 1)
√

(

15
16π

)

(3z2 − 1)

Complex conjugation : [Y l
m(θ, φ)]∗ = (−1)mY l

−m(θ, φ),

Completeness : f (θ, φ) =
∑

lm

flmY l
m(θ, φ), where

flm =

∫

d cos θdφ[Y l
m(θ, φ)]∗f (θ, φ).
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Orbital angular momentum

Legendre and Associated Legendre Polynomials

One often writes the spherical harmonics in the form

Y l
m(θ, φ) = (−1)m

√

2l + 1

4π

(l − m)!

(l + m)!
eimφPm

l (cos θ),

where Pm
l (z) are called associated Legendre polynomials. From the

recursion relations used before, one can find

Pm
l (z) =

(−1)l

2l l!
(1 − z2)m/2

(

d

dz

)l+m

(1 − z2)l .

The Legendre polynomials are Pl(z) = P0
l (z). One can check that the

Legendre polynomials are a complete set of orthogonal functions in the
interval −1 ≤ z ≤ 1.
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Orbital angular momentum

A problem

1 Starting from the trivial polynomial p0(z) = 1/2, construct
successively polynomials of successively higher orders which are
orthogonal to all previously constructed polynomials. Does this
process give the Legendre polynomials?

2 Use Mathematica to construct arbitrary Legendre polynomials using
the derivative expression given before.

3 Check that they are orthonormal using Mathematica, and then prove
that they are orthonormal.

4 Plot successive Pl(z) and check that the zeroes of each Pl is
bracketed by the zeroes of Pl−1.

5 If the inner product on the Hilbert space of polynomials is changed to

〈f |g〉 =

∫ 1

−1

dzw(z)f (z)g(z),

then the set of orthogonal polynomials changes. What weight function
needs to be used to obtain the associated Legendre polynomials?
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The rigid rotor: a quantum top

Operators and the Hamiltonian

2

x 1

y

z3

The angular momentum of a top around its
center of mass can be resolved into components
along space fixed axes or along the principal axes
of the body (body fixed axes),

L = Lx x̂ + Ly ŷ + Lz ẑ = L1n̂1 + L2n̂2 + L3n̂3.

The Hamiltonian of the top is

H =
L2

1

2I1
+

L2
2

2I2
+

L2
3

2I3
,

where Ij are the principal moments of inertia.
The commutation relations of the space-fixed
components of L are [Lx , Ly ] = i~Lz , etc..
However, the commutation relations of the
body-fixed components are [L1, L2] = −i~L3,
etc..Sourendu Gupta (TIFR Graduate School) Orbital angular momentum QM I 11 / 20



The rigid rotor: a quantum top

The meaning of commutators

Rotations about two different axes do not commute. One finds—

Rx(φx)Ry (φy ) − Ry (φy )Rx(φx)

≃ (1 + iφxLx/~ + · · · ) (1 + iφyLy/~ + · · · ) −
(1 + iφyLy/~ + · · · ) (1 + iφxLx/~ + · · · )

≃ −iφxφy (LxLy − LyLx)/~ + · · ·
= 1 − Rz(φxφy ) + O(φ3).

These manipulations start from the effect of rotations on quantum states.
However, the fact that the difference of two rotations about different axes
in opposite orders can be written as a third rotation can be seen even in
classical mechanics (Goldstein).
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The rigid rotor: a quantum top

Rotations in body fixed axes

Now examine the commutator

R1(φ1)R2(φ2) − R2(φ2)R1(φ1),

in the configuration where the body fixed and space fixed axes coincide
before the rotations are made. The first rotation can then be replaced by a
space fixed rotation. So, for example, the first term above can be written
as

R1(φ1)Ry (φ2) = Rx ′(φ1)Ry (φ2),

where we have used the fact that the axis about which the second rotation
is performed changes as a result of the first. But a rotation about a
changed axis can be related to that about the original axis through

Rx ′(φ1) = R(x̂ → x̂ ′)Rx(φ1)R
−1(x̂ → x̂ ′).

By the argument above, one sees that R(x̂ → x̂ ′) = Ry (φ2).
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The rigid rotor: a quantum top

Commutation relations in body fixed axes

The previous arguments show that

R1(φ1)Ry (φ2) = Ry (φ2)Rx(φ1)R
−1
y (φ2)Ry (φ2) = Ry (φ2)Rx(φ1).

The reversal of order also occurs in the second term, as a result of which
the commutator reverses sign, and

R1(φ1)R2(φ2) − R2(φ2)R1(φ1) = R3(φ1φ2) − 1 + O(φ3).

One has R3 = Rz in this formula, since the rotation R3 is applied in the
original unrotated frame, i.e., when the body fixed axes coincide with the
space fixed axes. This shows that the commutation relations in the body
fixed axes become

[Lj , Lk ] = −i~ǫjklLl .

However, this change of sign in the commutator does not affect the
spectrum of L3 and L2. (Check)
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The rigid rotor: a quantum top

Spectrum of a rigid rotor

When I1 = I2 = I3, the Hamiltonian is

H =
L2

2I
.

The eigenfunctions of this Hamiltonian are |j , m〉, and the eigenvalues are
exatly those of L2, i.e., l(l + 1)~2/2I . In the context of atomic spectra it is
customary to introduce a rotational constant, B = ~/(4πI ) and write
E = Bhl(l + 1). There is a (2l + 1)-fold degeneracy for each eigenstate.
Successive energy levels are separated by ∆E = 2Bh. Transitions between
levels which are separated by ∆l > 1 are not allowed by selection rules.
For a typical diatomic molecule, the reduced mass m ≃ (A/2) GeV, where
A is the mass number of each atom. The separation between the nuclei is
of the order of 0.1 nm. In these units ~ ≃ 200 eV nm. Hence,
∆E ≃ (40000/108) eV, i.e., ∆E ≃ 10−4 eV.
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The rigid rotor: a quantum top

The symmetric quantum top

When I1 = I2 6= I3, one has a symmetric top. In this case,

H =
L2

2I1
+

(

1

2I3
− 1

2I1

)

L2
3.

The Hamiltonian is no longer spherically symmetric, since [H,L] 6= 0.
However, the two terms can be simultaneously diagonalized, and the
eigenfunctions of the Hamiltonian are precisely |l , m〉 and that

E (l , m) = ~
2

[

l(l + 1)

2I1
+

(

1

2I3
− 1

2I1

)

m2

]

.

When I1 < I3, there are l doubly degenerate energy levels below a single
level which coincides with that of the rigid rotor. For the case of I1 > I3,
the m 6= 0 levels all lie above that of the rigid rotor. Note also that the
states |j , m〉 and |j ,−m〉 can mix.
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The rigid rotor: a quantum top

Asymmetric quantum tops

For the asymmetric top, in which all three principal components of the
inertia tensor are unequal, a general formula for the energy is not possible.
However, since [H, L2] = 0, one can diagonalize the Hamiltonian for each l

separately. For l = 0, one finds that E = 0. For l = 1, the 3 × 3 matrix to
be diagonalized is

H =
~

2

4





1
I1

+ 1
I2

+ 2
I3

0 1
I1
− 1

I2

0 2
I1

+ 2
I2

0
1
I1
− 1

I2
0 1

I1
+ 1

I2
+ 2

I3



 .

The eigenvalues of this matrix are easily found to be

E =
~

2

2

(

1

I1
+

1

I2

)

,
~

2

2

(

1

I1
+

1

I3

)

,
~

2

2

(

1

I2
+

1

I3

)

,

with eigenvectors |1, 0〉, |1, 1〉 + |1,−1〉 and |1, 1〉 − |1,−1〉 respectively.
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The rigid rotor: a quantum top

A problem

1 Construct the matrices which represent L in the l = 2 representation.

2 Solve the asymmetric top problem for l = 2.

3 The classical motion of a top can be described in terms of precession
and nutation. Are such motions inherent in the solutions of the
quantum asymmetric top problem?

4 Set up and solve the asymmetric top problem for j = 1/2. Interpret
the results.

5 Does your interpretation correctly predict the behaviour of the
asymmetric top for j = 3/2.
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