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Rotationally symmetric potentials

The two-body problem

Consider two particles, at positions r1 and r2, which interact through a
rotationally invariant potential, V (r), where r = |r| and r = r1 − r2. The
Hamiltonian is

H2 =
p2

1

2m1
+

p2
2

2m2
+ V (r),

where operators acting on different particles commute.
We decompose the momenta into the pieces

P = p1 + p2 and p =
m2p1 − m1p2

m1 + m2
.

Then, defining the reduced mass, M = m1m2/(m1 + m2), one can
decompose the Hamiltonian as H2 = Hcm + H, where

Hcm =
P2

2(m1 + m2)
and H =

p2

2M
+ V (r).

Now, r and p satisfy canonical commutation relations. (check)
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Rotationally symmetric potentials

A tensor decomposition

Define L = r × p. Then Hcm, H, L2 and Lz commute with each other.
(check) Since [P,p] = 0, the basis of states can be decomposed into
direct products |Ecm〉 ⊗ |Elm〉. This basis uses the eigenkets

H|Elm〉 = E |Elm〉, L2|Elm〉 = ~
2l(l + 1)|Elm〉, Lz |Elm〉 = ~m|Elm〉,

and Hcm|Ecm〉 = Ecm|Ecm〉.
Since [H,L] = 0, we find that H{L+|Elm〉} = E{L+|Elm〉}. As a result, E

does not depend on m, although it can depend on j . Thus each energy
level is at least (2j + 1)-fold degenerate. If there is a higher degree of
degeneracy, then there is possibly an overlooked symmetry.
Usually one is interested in the eigenvalues E and the relative wavefunction

〈r|Elm〉 = ψElm(r) = ΨEl(r)Y
l
m(r̂).

The state |Ecm〉 is a free particle state, since there is no potential in the
direction conjugate to P.
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Rotationally symmetric potentials

The radial part of the Hamiltonian

To solve for the radial part of the wavefunction, one needs the radial part
of the Hamiltonian. Define the radial momentum

pr =
1

2
(r̂ · p + p · r̂) =

1

r
(r · p − i~) → −i~

(

∂

∂r
+

1

r

)

.

One can check that [pr , r ] = i~, so that [pr , f (r)] = −i~df /dr . It is also
straightforward to show that

L2 = (r × p) · (r × p) = r2(p2 − p2
r ).

Hence, the one can write

H =
p2
r

2M
+

L2

2Mr2
+ V (r).

The differential equation satisfied by the radial part of the wave function is
then

[

−
~

2

2M

(

d

dr
+

1

r

)2

+
~

2l(l + 1)

2Mr2
+ V (r) − E

]

ΨEl(r) = 0.
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Rotationally symmetric potentials

The radial differential equation

Since
(

d

dr
+

1

r

)

u(r)

r
=

1

r

du

dr
,

By introducing the change of notation Ψ(r) = u(r)/r , the differential
equation for the radial part of the wavefunction becomes

[

−
~

2

2M

d2

dr2
+

~
2l(l + 1)

2Mr2
+ V (r) − E

]

uEl(r) = 0, uEl(0) = 0.

The last condition ensures that the wavefunction remains normalizable.
In this form the equation looks like a quasi-one-dimensional equation with
an effective potential which is

Veff (r) = V (r) +
~

2l(l + 1)

2Mr2
.

The extra term is positive, and infinite as r → 0. It acts like a barrier, for
l > 0, and prevents particles from probing the region near r = 0. It is
sometimes called the centrifugal barrier.
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Rotationally symmetric potentials

The radial solution

Since u(r) is regular as r → 0, it must vanish as some positive power of r ,
i.e., u(r) → Cr z . This is just that part of the solution which has the
slowest approach to zero. Substituting this into the radial differential
equation, one finds

−
~

2

2M
{z(z − 1) − l(l + 1)} r z−2 + O(r z) = 0.

The coefficient of each power of r has to be equated to zero, and hence
z(z − 1) = l(l + 1). The only positive solution is z = l + 1.
Hence, the regularity condition at r = 0 reduces to the condition that

Lim

r → 0 uEl(r) = r l+1.
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The Coulomb problem

Scales of the Coulomb problem
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For the Coulomb interactions between an electron and a proton (or two electrons,
or two protons) V (r) = ±e2/r . Since α = e2/~c is dimensionless, we have a
fundamental velocity, a fundamental length (Bohr radius), and hence a
fundamental frequency (energy, the Rydberg energy) in this problem—

v0 = e2/~, a0 =
~

2

Me2
, E0 =

Me4

2~2
.

For the ep system, the reduced mass M ≃ me , and hence E0 = 13.6 eV.
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The Coulomb problem

The scaled Coulomb problem

Multiplying the radial equation by 2M/~2 and then again by a2
0, one has

[

−
d2

dρ2
+

l(l + 1)

ρ2
±

2

ρ
− λ2

]

uλ,l(ρ) = 0,
Lim

ρ→ 0 uλ,l(ρ) = ρl+1,

where ρ = r/a0 and λ2 = E/E0. The sign of the 1/ρ term is negative for
the Hydrogen atom problem.
There are two types of solutions for the classical problem: when E < 0 the
motion is bounded, consisting of Keplerian elliptic orbits; when E > 0 the
motion is unbounded, the orbits being hyperbolae. Solutions of the
quantum problem fall into the same classes. From previous experience we
expect that energy eigenvalues for the bounded orbits will be quantized,
through impositiion of the boundary condition u(r → ∞) = 0, whereas the
unbounded orbits will have a continuous energy spectrum.
In the limit ρ→ ∞ the potential terms can be neglected. When λ is real
(i.e., E < 0) one gets the solutions u ≃ exp(±λρ). Only the decaying
exponential is acceptable.
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The Coulomb problem

Coulomb bound states

We choose the negative sign for the 1/ρ term, and take λ2 = −E/E0 > 0, i.e.,
flip the sign of the term λ2. We make the ansatz

uλ,l(ρ) = ρl+1e−λρpλ,l(ρ), pλ,l(ρ) =
∑

i=0

ciρ
i ,

where p(ρ) is bounded as ρ→ 0 and grows slower than the exponential as
ρ→ ∞. The differential equation for bound states is

[

−
d2

dρ2
+ 2

{

λ−
l + 1

ρ

}

d

dρ
−

2

ρ
{λ(l + 1) − 1}

]

pλ,l(ρ) = 0.

Substituting the series into the equation, one finds a relation between the
successive coefficients—

i [(i + 1) + 2(l + 1)]ci+1 = 2[λ(i + l + 1) − 1]ci .

For large i one finds ci+1 ≃ 2λci/(i + 1). Hence, any infinite series solution sums

up to exp(2λρ), giving u(ρ) which diverges with ρ. Acceptable solutions are,

therefore, polynomials. Clearly when λ = 1/n, ci vanishes for i > n − l − 1.

These are the Laguerre polynomials. Normalization fixes c0.
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The Coulomb problem

Coulomb bound state solutions

The Coulomb bound state energies and radial wavefunctions are

E (n) = −
E0

n2
unl(r) =

(

r

a0

)l+1

Ln−l−1

(

r

a0

)

e−r/(na0).

States n contain 0 ≤ l < n, and hence are n2-fold degenerate.

Particles M (MeV) a0 E0 Size
ep 0.51 5.3 nm 13.6 eV 5.3 nm
µp 106 2.8 fm 2.5 KeV 2.5 fm
πp 121 2.2 fm 3.2 KeV 1.9 fm
Kp 323 0.8 fm 8.6 KeV 5.5 fm
e+e− 0.25 10.6 nm 6.8 eV 5.3 nm
µ+µ− 53 5.1 fm 1.4 KeV 2.5 fm
pp̄ 470 0.6 fm 12.5 KeV 0.3 fm
cc̄ 750 0.4 fm 20.0 KeV 0.2 fm
bb̄ 2500 0.1 fm 66.7 KeV 0.05 fm
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The Coulomb problem

Two problems

1 Coulomb scattering states: When E > 0, the quantity λ2 > 0.
Then the asymptotic solutions of the Coulomb radial equation can be
taken to be exp(±iλρ) (either sign is allowed). Now construct the
ansatz for the radial part of the wavefunction—

uλ,l(ρ) = ρl+1e±iλρyλ,l(ρ),

and examine the solutions of the differential equation for yλ,l(ρ).
What is the form of y at large ρ? For a given λ what values of l can
one have?

2 The Runge-Lenz vector: In the classical Coulomb problem the
Runge-Lenz vector

A = r̂ −
1

2
(p × L − L × p)

is conserved. Check that this remains true in the quantum problem,
i.e., [A,H] = 0. Find also the commutators [Lj ,Ak ] and [Aj ,Ak ].
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1 Quantum Mechanics (Non-relativistic theory), by L. D. Landau and E.
M. Lifschitz. The material in this lecture can be found in chapter 5.
Both the bound state and scattering state problem are solved.

2 Quantum Mechanics (Vol 1), C. Cohen-Tannoudji, B. Diu and F.
Laloë. Chapter 7 of this book discusses angular momentum. The
presentation in these lectures follow this chapter occassionally.

3 Classical Mechanics, J. Goldstein. The material on central forces in
this book is a pre-requisite for understanding this part of the course.

4 A Handbook of Mathematical Functions, by M. Abramowicz and I. A.
Stegun. This is a handy place to look up useful things about various
classes of functions.
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