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The free particle

The free particle equation

The radial differential equation for a free particle is
[

d2

dr2
− l(l + 1)

r2
+ k2

]

uk,l(r) = 0, uk,l(r) = r l+1yk,l(r),

where k2 = 2ME/~
2, and Ψk,l(r) = uk,l(r)/r . The solution for l = 0 is

uk,0(r) = sin kr . The equation for yk,l is

y ′′ +
2(l + 1)

r
y ′ + k2y = 0,

where we have dropped the subscripts on y to lighten the notation.
The derivative of this equation is

y ′′′ +
2(l + 1)

r
y ′′ − 2(l + 1)

r2
y ′ + k2y ′ = 0.

With the definition w = y ′/r , it is easy to check that this equation can be
rewritten as

w ′′ +
2(l + 2)

r
w ′ + k2w = 0.

Sourendu Gupta (TIFR Graduate School) Simple rotationally symmetric potentials QM I 4 / 17



The free particle

Free particle wavefunctions

As a result, one has

yk,l(r) =
2(−1)l

k l

(

1

r

d

dr

)l sin kr

r
,

Ψk,l(r) = 2(−1)l
r l

k l

(

1

r

d

dr

)l sin kr

r
.

As r → ∞, the slowest falling part of the wavefunction is when the
derivatives act on sin kr , i.e., Ψ(r) ≃ sin(kr − lπ/2)/r . One also writes

Ψk,l(r) =

√

2πk

r
Jl+1/2(kr) = 2kjl(kr).

Clearly, these are expansion coefficients when exp(ik · r) is written as a
series in Y l

m.
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The free particle

Finite range potentials

For any spherically symmetric potential V (r) which is zero outside
some range, the radial wavefunction must asymptotically go to

Ψk,l(r) ≃
1

r
sin

[

kr − lπ

2
+ δl(k)

]

,

where the phase shifts δl(k) can be obtained by matching the
wavefunction in the interior region (V 6= 0) to that in the exterior
region (V = 0).

The Coulomb potential is not finite ranged.

A problem: Solve the problem of a spherical “square” well, i.e.,
V (r) = −V0 for 0 < r < a and zero elsewhere. Using this solution
find the phase shifts, δl(k), for this potential.
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The isotropic harmonic oscillator

The radial equation

The radial differential equation for an isotropic harmonic oscillator is

[

d2

dr2
− l(l + 1)

r2
− M2ω2

~2
r2 +

2ME

~2

]

uk,l(r) = 0, uk,l(r) = r l+1yk,l(r),

where Ψk,l(r) = uk,l(r)/r . Now defining the intrinsic length a0 =
√

~/Mω
and defining the dimensionless variables ρ = r/a0 and λ = 2E/~ω, we find
that the equation becomes

[

d2

dρ2
− l(l + 1)

ρ2
− ρ2 + λ

]

uλ,l(ρ) = 0, uλ,l(ρ) = rρ+1yλ,l(ρ).

At long distances the centrifugal term and λ are sub-dominant. Then the
dominant part of the solution is clearly y ≃ exp(−ρ2/2). Using this, an
appropriate ansatz for the solution would be to write
yλ,l(ρ) = pλ,l(ρ) exp(−ρ2/2), where p grows slower than the inverse of the
exponential. We insert this ansatz into the radial equation.
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The isotropic harmonic oscillator

The radial solution

The equation for p is found to be
[

d2

dρ2
− 2

(

ρ +
l + 1

ρ

)

d

dρ
− (2l + 3 − λ)

]

p = 0.

The radial equation determines that the is even under the (unphysical)
transformation ρ → −ρ. As a result, p(ρ) must be either even or odd.
However, c0 6= 0, otherwise the solution at small ρ would have wrong
behaviour. Hence, the solutions have only even powers of ρ. Using the
Taylor expansion p =

∑

j cjρ
j , we get a recurrence relation for the

coefficients

(j + 2)(j − 2l − 1)cj+2 = (2j + 2l + 3 − λ)cj .

The non-terminating solution grows too fast, and must be discarded.
When λ = 2n + 3, solutions terminate at the (n − l)-th term, which is
even. The ground state, n = 0 (hence E = 3~ω/2) has l = 0; the first
excited state, n = 1, i.e., E = 5~ω/2, has l = 1; the second excited state,
n = 2, i.e.E = 7~ω/2, has l = 0 and 2.
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The isotropic harmonic oscillator

The complete symmetry of the problem

Write the Hamiltonian for the isotropic harmonic oscillator in the form

H = ~ω





3

2
+

3
∑

j=1

a
†
j aj



 ,

where aj = (Mωrj + ipj)/
√

2M~ω are lowering operators. The eigenstates
are |nx , ny , nz〉, and they form an alternate basis on the space spanned by
|nlm〉 with n = nx + ny + nz . Now construct the operators

Tij =
1

2
(a†i aj + a

†
j ai ), [Tij , Tkl ] = δjkTil − δilTjk .

They do not change n, and hence commute with H. Only eight of these
are independent, and they form the algebra called su(3). Exponentials of
these operators are the symmetry group of the problem, and is called
SU(3).
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The isotropic harmonic oscillator

A problem

Check that Lj = −i~ǫjklTkl . Also, define the operators

Aij =
1

2
~ω(Tij + Tji ) =

1

2M
(pipj + M2ω2ri rj).

Note that the corresponding classical operators are conserved. Explicitly construct
the eigenvectors of the classical tensor A (considered as a 3 × 3 matrix) and find
the relation between the orbit of oscillator and these eigenvectors.
Define the quantities a± = a1 ± ia2, a0 = a3 and their Hermitean conjugate
operators. Find the commutators of these operators with Lj . Using these raising
and lowering operators, construct

Q0 = ~[2a†0a0 −
1

2
(a†−a+ + a

†
+a−)],

Q±1 = ∓~[a†0a± + a
†
±a0],

Q±2 = ~a
†
±a±.

Find the commutators of the Qλ with each other and with the Li . How are they

related to Tij? Compute Qλ|nlm〉.
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Symmetries of the Coulomb problem

The Runge-Lenz vector

A = r̂ − a0

2~2
(p × L − L × p)

is a vector operator, therefore [Lj ,Ak ] = i~ǫjklAl . Also, one can check that

[Aj ,Ak ] = −i
2Ma2

0H

~2
ǫjklLl .

Finally, this is a symmetry generator, [Aj , H] = 0. This vector operator
can be used to ladder between states |nlm〉 for varying l .
For the bound states, it is more convenient to define

Aj =
~

2Aj
√

−2Ma2
0E

, so [Lj , Ak ] = i~ǫjklAl , [Aj , Ak ] = i~ǫjklLl .

These are the commutation relations for the generators of the group of
rotations in 4 (Euclidean) dimensions, i.e., SO(4).
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Symmetries of the Coulomb problem

Four dimensional rotations

Define the generators of rotations in 4-dimensions through the operators
Lab = rapb − rbpa where a 6= b and both indices run from 1 to 4. Then it
is a straightforward check that the canonical commutation relations give
rise to [Lab, Lbc ] = −i~Lac (when a 6= b 6= c).
Now make the identification

L =









0 L3 −L2 A1

0 L1 A2

0 A3

0









.

Then with this identification of the components Lab it is clear that the
previously computed commutators become exactly those for the generators
of SO(4).
For E > 0 the definition of A contains an extra factor of i . The group of
symmetries is then the Lorentz group SO(3,1).
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Symmetries of the Coulomb problem

Pauli’s solution

Define J± = (L±A)/2. Then the previous commutators can be written as
[J±

j , J±
k ] = i~ǫjklJ

±
l and [J+

j , J−
k ] = 0. Therefore, the bound eigenstates of

the Coulomb Hamiltonian can be specified by the eigenvalues of (J+)2 and
(J−)2. One can easily check that

L · A = A · L = 0, and L2 + A2 = − ~
2

2Ma2
0E

− 1.

From these it follows that

(J+)2 = (J−)2 = j(j + 1)~2, and
4Ma2

0E

~2
= − 1

n2
,

where n = 2j + 1. Clearly the degeneracy of each level is
(2j1 + 1)(2j2 + 1) = n2. Since L = J+ + J−, the allowed values of l are
those obtained by a coupling of two angular momenta of magnitude
(n − 1)/2, i.e., 0 ≤ l ≤ n − 1.
Finding simultaneous eigenvectors of H, Az and Lz correspond to
diagonalizing the Coulomb Hamiltonian in parabolic coordinates.
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1 Quantum Mechanics (Non-relativistic theory), by L. D. Landau and E.
M. Lifschitz. The material in this lecture can be found in chapter 5.
Both the bound state and scattering state problem for the Coulomb
potential are solved. The solution in parabolic coordinates is also
given.

2 Quantum Mechanics (Vol 1), C. Cohen-Tannoudji, B. Diu and F.
Laloë. Chapter 7 of this book discusses central potentials.

3 Classical Mechanics, J. Goldstein. The material on central forces in
this book is a pre-requisite for understanding this part of the course.

4 Classical groups for Physicists, by B. G. Wybourne. This book is
highly recommended for a good exposition of Lie groups, and
contains material of direct relevance to this lecture.

5 A Handbook of Mathematical Functions, by M. Abramowicz and I. A.
Stegun. This is a handy place to look up useful things about various
classes of functions.
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