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The double-slit experiment and its cousins

Wave-particle unity

Detector
(screen)

Use a laser which emits one photon at a time. Use the screen as a
detector.
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The double-slit experiment and its cousins

Wave-particle unity

@ The laser emits one photon at a time. Each photon appears as a
single pointlike flash when it arrives at the screen. This is exactly
what you expect of a particle.

@ When you plot the positions of many such flashes, then the density of
points is governed by the interference fringes. The variation of the
intensity through interference is exactly what you expect of a wave.

@ A quantum particle is both a wave and a particle: a wave when it
travels through the slit, a particle when seen by the detector.

@ The state of a quantum particle must have a wave description. This
is one complex number at each point of space (Schrédinger). The
square of the modulus of the wave is proportional to the probability of
finding the particle at a point (Born).
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The double-slit experiment and its cousins

Which-slit experiment

Electron gun

Electron detector:
coincidence circuit

Electrons scatter from photons. Back-to back electrons, if no photon. One
of the electrons missing if photon passes through one of the slits.
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The double-slit experiment and its cousins

Phase coherence

Wave function of photon passing through top slit: Wi(x).
Wave function of photon passing through bottom slit: Wa(x).
Full wave function: W(x) = W;(x) 4+ Wa(x).

Fixed phase relationship between the two needed for interference, i.e.,
if Wp(x) = Wi(x)A(x)e®™), then

W(x)[* = |[W1(x))? x {1+ A(x)* + 2A(x) cos p(x) } -

Usual case of interference: ¢(x) = k x path difference(x).

If phase relationship randomized, then interference disappears.
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The double-slit experiment and its cousins

Quantum cool

(Scully and Driihl, 1982) Quantum eraser.

© What happens if we collect information about "which path” but never
use it?

© What happens if we collect information about "which path” but erase
the information before looking at it?

© What happens if we collect information about "which path” but look
at it long after the photons have reached the screen?

(Schrodinger, 1935) Schrodinger’s cat.

Macroscopic quantum states, entanglement.

(Bell, 1964) Locality vs reality.

Bell's inequalities: quantum entanglement is non-local but cannot be used
to send faster-than-light messages.
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Additions of waves: vector spaces

Vectors

Take vectors such as x = (x1, x2, x3) and y = (y1, y2,¥3). Let a, b, ¢, etc,,
be scalars. Then, the following are true—
O A vector multiplied by a scalar is a vector: ax = (axy, axz, ax3).
© Two vectors can be added to give a new vector:
Xx+y=(x1+ y1,x + y2,x3 + y3). Vector addition is commutative:
x+y =y +Xx, and associative: (x +y)+z=x+(y+z).
Multiplication by scalars is distributive over vector addition:
a(x +y) = ax + ay. Scalar addition is distributive over multiplication
by a vector. Scalar multiplication is compatible with multiplication
with a vector.
© There exists a zero vector: 0 such that x + 0 = x for any vector x.
There exists a negative of every vector.
© There is an inner product (dot product): x -y = x1y1 + x2y2 + x3y3.
The number of linearly independent vectors is the dimension of the space,
D. An basis is a choice of D linearly independent vectors, in terms of
which one can expand any vector.
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Additions of waves: vector spaces

Square integrable functions are vectors!

Take functions f(x), g(x), etc., such that

/ dx|f(x)>  and / dx|g(x)|?

exist. Let a, b, c, etc., be constrants. Then, the following are true—
© There is an inner product: [ dxf(x)g*(x). (Prove this)
© af(x) is square integrable.

© f(x) + g(x) is square integrable. The sum is clearly commutative and
associative. Multiplication by a constant is distributive over the
addition of the two functions; scalar addition is distributive over
multiplication by a functions; scalar multiplication is compatible with
multiplication by a function.

© There exists a zero function. Every function has a negative.
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Additions of waves: vector spaces

Coordinates: linear independence and bases

Take a collection of vectors {x1,X2,X3,- - ,Xy}. such that it is impossible
to find any set of N numbers which satisfy the vector equation:

aixi + axxp + - - - + ayxy = 0.

Then, the collection is called linearly independent.

The dimension of the vector space is the largest size of a linearly
indpendent collection of vectors. Start from any vector x;. Find a second
vector which is linearly independent of this one. If you cannot find one,
then the vector space is one-dimensional. If you find one then you have
the set {x1,x2}. Find a third vector which is linearly indpendent of these
two. If you cannot find one, then the space is 2 dimensional. Otherwise
you have the set {x1,X2,x3}, etc.. Any set of D linearly independent
vectors in a vector space of dimension D is called a basis.
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Additions of waves: vector spaces

Components

@ Given a basis, every vector not in this basis is linearly dependent on
the basis vectors. Hence one has an unique decomposition

V = ViX] + VoX2 + - VDXp.

The numbers v; are the components of the vector in this basis.

@ The basis is orthonormal if x; - x; = ¢;;. (The Kronecker delta, dj, is
1if i = j and zero otherwise).

@ In an orthonormal basis the components of a vector are obtained by
taking a dot product with the basis vectors: v; = v - x;.

@ A change from one orthonormal basis to another is performed by
taking linear combinations of the components. This linear
combination is specified by an orthogonal matrix. In other words:

v/ = Mv, where v’ is the same as v but in the new basis. Since

v-v =1, and the length of the vector is not changed by the choice of
basis, one must have MTM =1 (MT is the transpose of the matrix
M).
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Additions of waves: vector spaces

The Fourier basis

@ The vector space of square integrable functions is infinite dimensional.
The recursive procedure for constructing a linearly independent set
does not end in any number of steps. (Prove this).

@ The plane waves, ¢x(x) = exp(ikx), provide a basis (almost) on these
functions. They are orthogonal under the inner product defined
before. However, they are not square integrable. We will assume that

this problem can be cured (the cure will come later) and continue.
(Cure this)

@ Each square integrable function can be completely specified by its
Fourier coefficients: f(k) = f(x) - ¢x(x), under the inner product
defined earlier. The standard representation as an infinite component
is the Fourier transform: f(x) = f(k).
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© The Feynman Lectures in Physics (Vol 3), by R. P. Feynman et al.
The material in this (and the previous) lecture correspond roughly to
the first chapter of this book.

© Quantum Mechanics (Non-relativistic theory), by L. D. Landau and E.
M. Lifschitz. The material in this (and the previous) lecture roughly
correspond to a few sections of the first chapter of this book. first
chapter of this book.

© Mathematical Methods for Physicists, by G. Arfken. This book
contains chapters on matrices and Fourier transforms which will be
useful throughout this course.

© The quantum eraser is discussed in an article in the April 2007 issue
of Scientific American.
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