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Vectors

Take vectors such as x = (x1, x2, x3) and y = (y1, 2, y3). Let a, b, ¢, etc,,
be scalars. Then, the following are true—
© A vector multiplied by a scalar is a vector: ax = (axy, axz, ax3).
Addition of scalars is distributive over multiplication by a vector.
Multiplication of scalars is compatible with multiplication by a vector.
© Two vectors can be added to give a new vector:
X+Yy=xi+y1,x + ¥2,x3 + y3. Vector addition is commutative:
x +y =y +x, and associative: (x+y)+z=x+(y+ 2).
Multiplication by scalars is distributive over vector addition:
a(x +y) = ax + ay.
© There exists a zero vector: 0 such that x + 0 = x for any vector x.
Every vector has a negative; a vector and its negative add up to 0.

© There is an inner product (dot product): x -y = x1y1 + x2y2 + x3y3.
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Transformations of bases

Using the operations that are allowed in a vector space, we can form
operators on vector spaces, i.e., operations which take any basis

{x1,X2, -+ ,Xp} and creates a new set of vectors
y1 = auXi+apx2+----+aipxp,
y2 = axXp -+ axpXy+----+ apXp,
Yp = apiXi+apsX2 + -+ appXxp.

The scalar coefficients in this linear transformation can be collected
together into the matrix

a1 d12 -+ aip

a1 a2 -+ axp
A=

api1 ap2 -+ app
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Linear transformations

@ If the new set {y;} is to be a basis, then the vectors must be linearly
independent. This implies that for the new set to be a basis, one
must have Det A # 0. (Prove this).

@ Usually, linear operations are introduced as linear transformations of
the components of a vector through the equation v = Av. (Show
that this follows from the transformation of bases)

@ Given that we have defined addition of vectors and multiplication by
scalars as the only way to generate new vectors out of those at hand,
the transformation of bases are the only operations we are allowed.
Thus, linear transformations of vector spaces are the only
transformations that we can deal with.

@ Every linear operator on a vector space clearly has a representation as
a matrix. Any linear operator that takes an orthonormal basis into
another orthonormal basis is an orthogonal transformation. (Prove
this)
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Dirac Bra and Ket notation

An inner product of a vector, v, with itself is usually denoted by v - v.
When the vector is represented by a column of components, then this
notation actually means vTv, where v7 is the transpose, i.e., a row of
components. Then, using the usual rules of matrix multiplication,
v-v=vZ+vi+- -+ v2 Fora vector with complex components,

v -v = viv, where the Hermitean conjugate, v is the row vector with each
component being the complex conjugate of the column vector’s
component.

Dirac introduced the notation |v) (called ket) for the column vector v and
the notation (v| (called bra) for the Hermitean conjugate vf. An inner
product (w|v) is called a bracket, and is a complex number (c-number).
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Measurements are Hermitean operators

@ A measurement on a quantum state gives a single number (scalar,
c-number). Since a quantum state is a vector, |v), there is only one
way to form a scalar from it, and that is to take an inner product.

@ Since the result of a measurement on a single quantum state, |v),
cannot involve some other quantum state, |w). Hence, inner products
such as (w|v) seem to be ruled out.

@ Is (v|v) the only possible representation of a measurement? No,
because it is possible to represent every measurement by an
appropriate operator A so that the result of the measurement is
(v|Alv).

@ Dynamical measurements (q, p, H, L, etc.) must all yield real
numbers. If A is the operator that describes a dynamical
measurement, then one must have (v|A|v)" = (v|A|v). But by
definition (v|A|v)* = (v|Af|v). Hence one has AT = A for a
dynamical measurement. Such operators are called Hermitean

Operators.
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Independent measurements and ensembles (1)

@ An ensemble of quantum systems is a collection of identical
systems which have no definite phase correlations with each other.
Thus the same measurement made on different members of the
ensemble are totally uncorrelated with each other.

@ An ensemble is specified by a density matrix, p. This is a Hermitean
operator with unit trace.

@ If one of the eigenvalues of p is unity (and the remainder, therefore,
zero), then in the diagonal basis one has p = |v)(v|, and each
member of the ensemble is said to be in the pure state |v).
Otherwise the ensemble is said to be in a mixed state.

@ A mixed state is not a coherent superposition of quantum states. A
mixed state density matrix describes an ensemble in which different
members are in different states.
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Independent measurements and ensembles (2)

@ The expectation value of any operator in the ensemble is Tr pA. If
the ensemble corresponds to a pure state, i.e., p = |v)(v/|, then the
expectation value Tr pA = (v|A|v), as expected. If |v) is an
eigenstate of A, then every measurement yields the same eigenvalue.
Otherwise, a measurement on different members of the pure state
ensemble yield different eigenvalues and the average of these
measurements is the expectation value.

@ By computing the variance of measurements in different
members of the ensemble, is it possible to check whether one
has a pure state or a mixed state?

Sourendu Gupta (TIFR Graduate School) Vector spaces and operators QM | 8 /17



Eigenbases of Hermitean operators

@ Diagonal elements of Hermitean operators are real.

@ Eigenvalues of Hermitean operators are real.

@ Eigenvectors of Hermitean operators are orthogonal to each
other.
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Eigenbases of Hermitean operators

@ Diagonal elements of Hermitean operators are real.

o Eigenvalues of Hermitean operators are real. If |\) is a
(normalized) eigenvector of A with eigenvalue A, then (A|A|A) = A.
Since \* = (AJA|A)* = (AAT|A) =\, Xis real.

@ Eigenvectors of Hermitean operators are orthogonal to each
other.

Sourendu Gupta (TIFR Graduate School) Vector spaces and operators QM | 9 /17



Eigenbases of Hermitean operators

@ Diagonal elements of Hermitean operators are real.

o Eigenvalues of Hermitean operators are real. If |\) is a
(normalized) eigenvector of A with eigenvalue A, then (A|A|A) = A.
Since \* = (AJA|A)* = (AAT|A) =\, Xis real.

@ Eigenvectors of Hermitean operators are orthogonal to each
other. Let |)\) and |u) be two distinct eigenvectors of a Hermitean
operator A with eigenvalues A\ and pu respectively. Now
(u]AIAY = A{u|A) where A acts to the right. Also, (A\|A|u) = ().
But (AA|p)* = (u|AT|A) = (u|A|)). Hence, if u # ), one has
() = 0.
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Eigenbases of Hermitean operators

@ Diagonal elements of Hermitean operators are real.

o Eigenvalues of Hermitean operators are real. If |\) is a
(normalized) eigenvector of A with eigenvalue A, then (A|A|A) = A.
Since \* = (AJA|A)* = (AAT|A) =\, Xis real.

@ Eigenvectors of Hermitean operators are orthogonal to each
other. Let |)\) and |u) be two distinct eigenvectors of a Hermitean
operator A with eigenvalues A\ and pu respectively. Now
(u]AIAY = A{u|A) where A acts to the right. Also, (A\|A|u) = ().
But (AA|p)* = (u|AT|A) = (u|A|)). Hence, if u # ), one has
(u) = 0.

@ When the two eigenvalues are equal, the eigenvectors need not be
orthogonal. However, one can always construct two linear
combinations which are orthogonal to each other (by the
Gram-Schmidt process).
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A problem

Consider the matrix

Il
o = O
O O =
= O O

© Is this matrix Hermitean?

© What are the eigenvalues and eigenvectors of this matrix?

© Are there linear combinations of eigenvectors which are also
eigenvectors?

© Is the unitary transformation that diagonalizes M unique?
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Diagonalizing a matrix

@ Collect the eigenvectors of A into a matrix U such that every column
of U is one of the eigenvectors. Then UTU = 1, since the eigenvectors
are orthonormal. Also, UTAU is diagonal, i.e., Hermitean matrices
can be diagonalized by unitary transformations.

@ The (normalized) eigenvectors, |i), of A with eigenvalues );
(here 1 < j < D) form a basis. As a result, any normalized state
can be written in the form

D D
= Zwim, where Z\qb;\z =
i=1 i=1

@ A measurement of A in the quantum state |/) would always give the
value \;. For a superposition of eigenstates, as above, each
measurement could give a different value; but with average

(W] Alp) = err Ai.
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Commuting operators

@ Two operators A and B commute if AB = BA.

@ The commutator of A and B is [A, B] = AB — BA. [A, B] = 0 when
the operators commute.

o If two operators commute, then they have the same eigenstates
(i.e., they are simultaneously diagonalizable).
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Commuting operators

@ Two operators A and B commute if AB = BA.
@ The commutator of A and B is [A, B] = AB — BA. [A, B] = 0 when
the operators commute.

o If two operators commute, then they have the same eigenstates
(i.e., they are simultaneously diagonalizable). Let |i) be the
eigenstates of A with eigenvalues A\;. The matrix elements of A are

Ajj = (i|Alj) and those of B are Bj;. Also, Ajj = \;djj. Since the
operators commute, one has

0="> (AiBiyj — BiAy) = (A — \))Bj.
k

When i # j, the equality demands that Bjj = 0. Hence B is diagonal
in the same basis as A.
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Commuting operators

@ Two operators A and B commute if AB = BA.
@ The commutator of A and B is [A, B] = AB — BA. [A, B] = 0 when
the operators commute.

o If two operators commute, then they have the same eigenstates
(i.e., they are simultaneously diagonalizable). Let |i) be the
eigenstates of A with eigenvalues A\;. The matrix elements of A are

Ajj = (i|Alj) and those of B are Bj;. Also, Ajj = \;djj. Since the
operators commute, one has

0="> (AiBiyj — BiAy) = (A — \))Bj.
k

When i # j, the equality demands that Bjj = 0. Hence B is diagonal
in the same basis as A. (There is a small gap in the proof; fix it.)

Sourendu Gupta (TIFR Graduate School) Vector spaces and operators QM | 12 /17



A problem

Consider the matrices

010 1 1 -2 =2
A=11 0 0}, and B = 3 -2 1 =2
0 01 -2 -2 1

© Are these matrices simultaneously diagonalizable?
© What are the eigenvalues and eigenvectors of A?

© Use the eigenvectors of A to construct an unitary transformation, U.
Find UTBU.

© Construct a one-parameter (6) set of unitary matrices V() such that
V(0)TUTAUV (theta) are diagonal for all §. Find what happens to
V(0)TUTAUV (theta) as a function of 6.

© Is there an unique set of common eigenvectors of A and B?
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Complete set of commuting operators

o If a set of (Hermitean) operators {A1, A2, -+ , An} all commute with
each other, and no other operator can be found in the vector space
which commute with this set, then this is called a complete set of
commuting operators.

@ There may be distinct complete sets of commuting operators in the
same vector space.

@ Given a complete set of commuting operators, there is an unique
unitary transformation which diagonalizes all of them simultaneously.
(If the set is not complete, then the unitary transformation may not
be unique: see the caviat on the previous page).

@ Since, the unitary transformation is unique, each eigenvector is
uniquely labelled by the eignvalue of each operator: [A1, A2, -+, An).
A quantum state is completely specified by the eigenvalues of a
complete set of commuting operators.
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Who is afraid of Hilbert spaces?

These words will not appear in this course again

© We have seen how to define complete bases of vectors, and how to
use these bases to give the components of an arbitrary vector. All
possible vectors in a vector space are generated by changing these
components. A real vector space has real components; a complex
vector space needs complex components.

© A vector space is complete if every (Cauchy) sequence of vectors
converges to a point in the space. (Counterexample)

© Every complete vector space is a Hilbert space. If the components of
the vectors are complex, then this is a complex vector space.

© A separable Hilbert space is one in which a countable set of
commuting operators exist, i.e., a countable set of eigenvalues specify
each vector.
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Summary: the postulates of quantum mechanics

Postulate 1

Starting from the analysis of the double slit experiment, we have
uncovered the fact that quantum states are elements of a vector space.
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Summary: the postulates of quantum mechanics

Postulate 1

Starting from the analysis of the double slit experiment, we have
uncovered the fact that quantum states are elements of a vector space.
(Of a separable, complex Hilbert space, if you want to be pedantic)
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Summary: the postulates of quantum mechanics

Postulate 1
Starting from the analysis of the double slit experiment, we have
uncovered the fact that quantum states are elements of a vector space.

Postulate 2
The most natural construction on a vector space is of linear operators, and
we identified these with physical quantities.

o
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© The Principles of Quantum Mechanics, by P. A. M. Dirac. The
material in this lecture is a paraphrasing of parts of this book.

© Quantum Mechanics (Non-relativistic theory), by L. D. Landau and E.
M. Lifschitz. The material in this (and the previous) lecture roughly
correspond to the first chapter of this book.

© The Feynman Lectures in Physics (Vol 3), by R. P. Feynman et al.
The material in this lecture has a tiny bit of overlap with Chapter 20
of this book.

© Mathematical Methods for Physicists, by G. Arfken. This book
contains chapters on matrices and vector spaces which will be useful
throughout this course.
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