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Examples of two-state systems

The two-slit experiment

Laser

Detector
(screen)

Double slit

One can label the slits in many ways: the labelling can be arbitrary or
physical). Clearly there is an identifiable quantum state corresponding to
the photon coming from slit 1, and another for the photon coming from
slit 2. The interference phenomenon is seen whenever the quantum state
relevant to the measurement is a superposition of the two.
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Examples of two-state systems

The H
+
2 molecule

The two hydrogen atoms can be labelled (either arbitrarily, or physically by
taking one of the nuclei to be of Hydrogen, the other to be of Deuterium).
The electron can be in orbit around one or the other nucleus. The
molecule does not form unless the electron state can be a linear
superposition of the two.
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Examples of two-state systems

The ammonia molecule

The three hydrogen atoms define a plane. The ammonia molecule has a
magnetic moment, and its orientation with respect to this plane defines an
“up” and a “down” direction.: the nitrogen atom can be either “above”
the plane or “below” it, or in a linear superposition of the two.
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Examples of two-state systems

The benzene molecule

The benzene ring must include both single and double (covalent) bonds
between the carbon atoms. There are two possible arrangements of these
kinds of bonds (described either by an arbitrary labelling of the carbon
atoms or by physically labelling them in some way). Can there be linear
superpositions of the electronic states of the valence electrons?
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Examples of two-state systems

Neutral K meson oscillations

dsds

K K0 0

Mesons are made of a quark and an anti-quark. Uncharged strange
mesons are called K0 mesons. Since the strange quark (s) has charge
−1/3, the same as a down quark (d), there are two possible kinds of K0—
either one with a strange anti-quark and a down quark (ds̄, called the K0)
or one with a strange quark and a down anti-quark (d̄s, called the K̄0).
Are linear superpositions of these two states allowed?
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The two-dimensional complex vector space

The Hilbert space

In all the examples above, we have started with two quantum states (call
them |1〉 and |2〉) which are orthogonal, and we have claimed that
quantum states which are arbitrary superpositions of these two can exist.
It is useful to keep in mind a concrete representation of the two states

|1〉 =

(

1
0

)

, and |2〉 =

(

0
1

)

.

Since an overall phase is immaterial to all that follows, we could also have
chosen, for example,

|1〉 =
1√
3

(

1 + 2i

0

)

, and |2〉 =
1√
3

(

0
1 + 2i

)

.

In quantum mechanics, these two choices are indistinguishable.
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The two-dimensional complex vector space

Hermitean operators for two-state systems

Take the most general 2 × 2 matrix

A =

(

z1 z2

z3 z4

)

.

If A+ = A then z1 and z4 are real and z2 = z∗3 . Hence four real parameters
are sufficient to determine the most general Hermitean matrix,

H =

(

a0 + a3 a1 − ia2

a1 + ia2 a0 − a3

)

.

If A and B are Hermitean, then aA + bB is Hermitean if a and b are real
scalars.
Hence any (real) linear combination of the following matrices is
Hermitean; the identity matrix 1 and the three Pauli matrices

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i

i 0

)

, σ3 =

(

1 0
0 −1

)

.
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The two-dimensional complex vector space

Algebra of Pauli Matrices

The Pauli matrices are square roots of unity: σ2
1 = σ2

2 = σ2
3 = 1.

Since the Pauli matrices have vanishing trace and their squares are
identity, the eigenvalues of each of them must be +1 and −1 (the
eigenvalues are square roots of unity).

The Pauli matrices do not commute with each other—

[σ1, σ2] = 2iσ3, [σ2, σ3] = 2iσ1, [σ3, σ1] = 2iσ2.

In terms of the completely anti-symmetric symbol (the Levi-Civita
symbol) we can write [σj , σk ] = 2iǫjklσl . Here we have chosen the
convention that ǫ123 = 1.

The Pauli matrices anti-commute with each other: {σi , σj} = 2δij .

Using the notation σ0 = 1, any Hermitean matrix can be written in
the form H = aiσi . There are no restrictions on the components of
ai , and there are no relations between them.
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The two-dimensional complex vector space

Eigenvectors of Pauli matrices

The states |1〉 and |2〉 are eigenvectors of σ3 with eigenvalues 1 and
−1 respectively.

Since none of the Pauli matrices commute with each other, they
cannot be simultaneously diagonalized.

The eigenvectors of σ1 are |+〉 and |−〉1. Hence the unitary
transformation that rotates the eigenbasis of σ3 into that of σ1 is

U31 =
1√
2

(

1 −1
1 1

)

.

Check that this indeed diagonalizes σ1. What does it do to the
other Pauli matrices?

What are the eigenvectors of σ2? Construct the unitary
transformation which diagonalizes σ2, and check what it does
to the other Pauli matrices.
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The two-dimensional complex vector space

Functions of matrices

If A is a diagonal matrix, and B = f (A), then B is diagonal and
Bii = f (Aii ).

If A can be diagonalized, then f (A) can be found by first
diagonalizing A → UAU†, then constructing B = f (UAU†) in this
basis, and finally transforming back, B → U†BU = U†f (UAU†)U.

The exponentials of Pauli matrices can easily be found in this way.
For example,

exp(aσ) =

(

e
a 0
0 e

−a

)

.

All other Pauli matrices look the same in their eigenbasis.
(Exponentiate the other Pauli matrices)

The eigenvalues of unitary matrices are complex numbers of unit
modulus.

Every unitary matrix, U can be written as exp(iH) where H is a
Hermitean matrix.
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Time evolution: Schrödinger’s equation

Time evolution

Planck’s hypothesis, when extended to all quantum states, contains
the rule for time evolution of quantum states. All waves evolve
through the phase factor exp(−iωt). Since E = ~ω, a quantum state
of definite energy evolves as exp(−iEt/~).

The time evolution of an arbitrary superposition of states must,
therefore, be given by |ψ(t)〉 = U(t − t0)|ψ(t0)〉, where
U(t) = exp (−iHt/~), and H is the Hamiltonian operator. The
evolution operator is unitary since H is Hermitean.

Using the definition of matrix exponentials, one sees that the time
derivative of U(t) is −iHU(t)/~. This gives us Schrödinger’s
equation

i~
d

dt
|ψ〉 = H|ψ〉.

The complete solution needs one initial condition, i.e., |ψ(t0)〉.
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Time evolution: Schrödinger’s equation

Evolution of density matrices

Since every density matrix can be written in terms of a complete basis in
the form

ρ =
∑

ij

ρij |i〉〈j |,

it’s time evolution can be written in the form

ρ(t) = U(t − t0)ρ(t0)U
†(t − t0).

The chain rule of differentiation then gives the evolution equation for the
density matrix—

i~
d

dt
ρ(t) = [H, ρ(t)].

A complete solution needs the initial density matrix. This equation is
called von Neumann’s equation.
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Evolution operator for a two level system

The general case

The most general Hamiltonian for a two level system is just the most
general Hermitean matrix we had written before: H =

∑3
i=0 aiσi . The

most general evolution operator is then U = exp(−it
∑

i aiσi/~).
Write a = (a1, a2, a3) = |a|n̂, where |a|2 = a · a, and n̂ is a real unit
3-vector. The matrix s = n̂ · σ has eigenvalues ±1 since s2 = 1. (Prove
this)
Hence, the energy eigenvalues are E± = a0 ± |a|, and

U = V †

(

exp(−iE+t/~) 0
0 exp(−iE−t/~)

)

V ,

where V is the unitary matrix which diagonalizes s. Writing
n̂ = (sin θ cosφ, sin θ sinφ, cos θ), one finds that

s =

(

cos θ sin θe−iφ

sin θeiφ cos θ

)

, V =

(

cos(θ/2)eiφ sin(θ/2)
− sin θ cos(θ/2)e−iφ

)

.

(Show this. What is the corresponding expression for U?)
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Evolution operator for a two level system

Time evolution

If an initial quantum state is

|ψ(t0)〉 = cosα|E+〉 + sinαe
iβ |E−〉,

where the two basis states on the right are eigenstates of the Hamiltonian,
then, after time evolution one has

|ψ(t)〉 = cosαe
−iE+t/~|E+〉 + sinαe

i(β−E
−

t/~)|E−〉.

The squared amplitude therefore oscillates in time.
How do you apply this argument to the double slit experiment?
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Evolution operator for a two level system

A problem

The most general 2 × 2 unitary matrix is

U =

(

z1 w1

z2 w2

)

, with U†U = 1 = UU†.

Choosing z1 = cos θ exp(iφ), z2 = sin θ exp(iφ′), w1 = cosψ exp(iα),
w2 = sinψ exp(iα′) satisfies the normalization constraints from U†U. The
normalization constraints from UU† further imply that cos2 φ = sin2 θ.

1 Complete the evaluation using the normalization constraints.
2 What is the determinant of U?
3 Note that any overall phase of wavefunctions does not matter. Can

this be used to restrict the class of unitary transformations required in
quantum mechanics? (For example by putting a condition on the
determinant of U)

4 Compare the parametrization of a general complex matrix made here
with the unitary evolution operator and find when the two are the
same.
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1 The Feynman Lectures in Physics (Vol 3), by R. P. Feynman et al .
Examples pf two-state systems are discussed in detail in chapters 9,
10 and 11 of this book.

2 Quantum Mechanics (Non-relativistic theory), by L. D. Landau and E.
M. Lifschitz. The material on Pauli matrices can be found in chapter
8 of this book. There are also a couple of useful problems regarding
the manipulation of the Pauli matrices.

3 Quantum Mechanics (Vol 1), C. Cohen-Tannoudji, B. Diu and F.
Laloë. Chapter 3 of this book discusses several two-state systems in
the kind of detail that is the hallmark of this book.

4 Mathematical Methods for Physicists, by G. Arfken. This book
contains chapters on matrices and vector spaces which will be useful
throughout this course.
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