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Energy eigenstates

The Hilbert space of two state systems

For all two state systems, we have an orthogonal basis, which we have
represented by the vectors

In this basis the three Pauli matrices are

01 0 —i 1 0
n=(o) =) el 5,

Also, H = ZJ?-’:O ajoj is Hermitean if a; are real (og is the identity matrix).
The matrix exp(ixH) is unitary if H is Hermitean and x is real.
We have also introduced a rotated basis
1
V2
In this basis o1 is diagonal.
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Energy eigenstates

Resonant stabilization

Whenever the two possible basis states of the quantum system cannot be
distinguished from each other, the Hamiltonian must be symmetric under
their exchange. Since o1 exchanges the two quantum states |1) and |2),
we have

H=o1Ho{t, ie., [H,01]=0.

The only Pauli matrices which commute with o7 are identity and itself.
Hence, the symmetry above requires that H = Ep + woy. Ep is called the
unperturbed energy (or zeroth order energy), and w is called the mixing
parameter.

By the arguments given previously, the eigenvalues of this Hamiltonian are
E. = Ep £ w, and the eigenvectors are |+) and |—). If w < 0, then the
lowest energy state is |+). The energy of the superposition state is lower
than that of the original states. This is true of of Hj, benzene and
ammonia. This general feature of symmetric states is called resonant
stabilization.
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Energy eigenstates

Avoided crossings

Consider the unperturbed Hamiltonian Hy = Eg + Aos3, so that the
original energies are E; = Eg + A and E; = Eg — A. If the full
Hamiltonian is H = Hy + wo1 + w/op, then the energy levels of the system
are EL = Eg + /A2 + |W|?, where W = w + iw’. For general values of
A, the energy splitting is quadratic in the mixing parameter, |W/|.
However, for A < |W/|, the splitting is linear in |W/|, as was worked out in
the earlier example.
For A > |W/| it seems that the energy levels might cross, but any |W/|, no
matter how small, causes avoided level crossings,
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Energy eigenstates

Level crossing: an extra symmetry

© The only case in which level crossing occurs is the special
Hamiltonian H = Eg. In this special case the Hamiltonian commutes
with all three Pauli matrices, i.e., [H,0;] = 0. Since the vanishing of
the commutator implies a symmetry, this means that the symmetry is
enlarged from permutation symmetry of the two basis states to
something larger.

©Q The simplest symmetry of the system, i.e., the symmetry under
interchange of the two basis states, predicted an avoided level
crossing. An enlarged symmetry is needed for levels to cross. At the
point where the two levels become degenerate, there is an enhanced
symmetry.

© In general, unexpected degeneracy of energy levels is a signal for an
unexpected enlargement of the symmetry of the problem.
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Oscillations

Rabi formula

The most general time dependent state in a two-state system is
(1)) = e E+t/R [cos a|E,) + sin qe{AHE—E)/BH E I

Inverting our earlier solution for the energy eigenstates in terms of the
basis states, we find (using the overall phase freedom)

6 6 _;
|1) = cos §\E+> + sin §e7’¢|E_>.

If we start the system off in the state |1) at time t = 0, then & = 0/2 and
B = —¢. The probability that at any time the system can again be found
in the state |1) is given by the Rabi formula

P() = [(hi(e) P =1 - V0 g2 (th”‘W'z) ,

A2+ (W2 h

since tanf = |W/|/A. This formula describes oscillations in the neutral
Kaon system, oscillations of (solar) neutrinos between ve and v, etc.
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Oscillations

Classical Larmor precession

Consider a system with a magnetic moment m. This system must possess
an angular momentum j, such that m = ~j, where the scalar  is called the
gyromagnetic ratio. If this system is placed within an uniform magnetic
field, B, then the Hamiltonian is H = —~j - B. The equation of motion is

—m =m x B.

dt
Taking dot products with m and B, we see that both m-m, and m- B are
conserved. In other words, the motion consists of a vector of constant
magnitude rotating around B making a constant angle with it. This
motion is called Larmor precession.
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Oscillations

Quantum Larmor precession

The quantum mechanics of a system of spin 1/2 moving in a constant
magnetic field is obtained by taking H = —30 - B (the angular momentum
is replaced by the operator hio/2). If the direction of B is the z-direction,
then the energies are £vh|B|/2, and the eigenvectors are |1) and |2). If
the initial quantum state is

0 0 _;
|1)(0)) = cos 5\1> + sin Ee*’¢\2>,
then, at any time t the quantum state is

|1h(t)) = cos §|1> +sin ge_i(¢_th)|2>.

where w; = v|B|. The expectation values

(W(t)mly(t)) = %yh(sin 0 cos{¢p — wyt},sinfsin{¢p — w t},cosh)

show that we have a quantum description of Larmor precession.
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Density matrices

Density matrices

The density matrix appropriate to a two-state systemis p=1/2+s- 0.
As a result, the expectation values (o;) = Trojp = s;.
Take the Hamiltonian of the system to be H = hg +h-o. Then

3 3
[H,p] = Z hjSk[Uj,O'k] =2i Z ij/hjSkU/.
Jjk=1 Jjkl=1

The von Neumann equation (i.e., the evolution equation for the density
matrix) can be reduced by multiplying both sides by o, and taking a trace.

This gives the equation
ds
h— =2h x s.
dt
This looks like the classical equation for a spin precessing in an effective
magnetic field which can be constructed from the Hamiltonian.
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Density matrices

Pure states: the Bloch sphere

For the pure state ensemble built from the generic quantum state

|1)) = cos Q\E+> + sin Qe*"‘z’\E_%
2 2

one has s = (sin f cos ¢, sin §sin ¢, cos ). We have chosen the eigenstates
of the Hamiltonian as the basis states. Pure state ensembles correspond to
points on a sphere (called the Bloch sphere).
The time evolution of this state adds a phase wt to ¢ (where
w = (E_ — E})/h. This is an example of the general evolution of the
density matrix: the vector s precesses around a certain direction.
What happens to pure state ensembles of the eigenvectors of the
Hamiltonian?.
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Density matrices

The canonical ensemble: a mixed state

A thermal ensemble of two state systems is the canonical ensemble. In
this ensemble we are concerned with the physics of a two state system
whose time evolution is governed by a Hamiltonian H but which is also
allowed to exchange energy with the environment (called a heat bath). In
equilibrium such a density matrix does not evolve. Hence [H, p] = 0, and
the only allowed density matrices are f(H).

The canonical ensemble is described by the density matrix
p=-exp(—H/T)/Z where Z =Tr exp(—H/T). For a spin-1/2 system
immersed in a magnetic field of strength B, pointing in the z direction,

H = —yhBo3/2. Hence Z = 2 cosh(vyhB/2T), and

B 1 exp(—yhB/2T) 0
B T) = S cosh(hB/2T) < 0 exp(*yhB/ZT)) '

This gives (Jy) = (Jy) =0 and (J;) = —(h/2) tanh(yhB/2T). This is the
Curie-Weiss law.

Note the resemblance between this p and the unitary eyolution operator!
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Raising and lowering operators

Raising and lowering operators

@ The lowering and raising operators are

1. {00y 4 1. (01
9—2(0’1—102)—<1 0)’ a —2(01+102)—<0 0>.

They are Hermitean conjugates of each other.

@ They have the action a|1) = |2) and a|2) = 0, af|2) = |1) and
a'|1) = 0. Clearly a*> = (af)? = 0.

@ What are [a',a] and {a',a}?

@ Note that a and af cannot be diagonalized.

o Every matrix function of a and af contains only two terms in its
Taylor expansion. For example, exp(ax) = 1 + ax for any scalar x.
Note that v/2|+) = exp(a)|1) = exp(a’)[2).

@ The state vector exp(az)|1) (for any complex z) is proportional to the
most general (normalized) state vector for a two-state system. (Does
each z correspond to an unique normalized state? Is this
related to the Bloch sphere?)
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© The Feynman Lectures in Physics (Vol 3), by R. P. Feynman et al.
Examples pf two-state systems are discussed in detail in chapters 9,
10 and 11 of this book.

© Quantum Mechanics (Non-relativistic theory), by L. D. Landau and E.
M. Lifschitz. The material on Pauli matrices can be found in chapter
8 of this book. There are also a couple of useful problems regarding
the manipulation of the Pauli matrices.

© Quantum Mechanics (Vol 1), C. Cohen-Tannoudji, B. Diu and F.
Laloé. Chapter 3 of this book discusses several two-state systems in
the kind of detail that is the hallmark of this book.

© There is a nice article about solar neutrino observations in the web page
http://nobelprize.org/nobel_prizes/physics/articles/bahcall/index.html
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