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The Hilbert space

Basis functions for waves

Normalizable wave functions are square integrable. The Hilbert space of
such complex functions is sometimes called L2. We have seen that a basis
is given by the plane waves, although the plane waves themselves do not
lie in L2. We rephrase all this in more formal language.
In D-dimensional space, introduce the position operator r̂ and the
momentum operator p̂. The eigenstates are r̂|r〉 = r|r〉 and p̂|p〉 = p|p〉.
The bases are complete—

∫
dDr |r〉〈r| = 1 and

∫
dDp |p〉〈p| = 1.

As a result, any function can be expanded in either of these bases.
The wavefunction corresponding to a state |ψ〉 is the complex function
〈r|ψ〉 = ψ(r). This is an expansion of the state in the eigenbasis of r̂. The
position and momentum eigenstates in this basis are

〈r|p〉 =
1√

(2π)D
e
ip·r/~

and 〈r|r′〉 = δD(r − r′).
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The Hilbert space

Representations of operators

Since

〈r|̂r|ψ〉 =

∫
dDr′ 〈r|̂r|r′〉 〈r′|ψ〉 =

∫
dDr′ r′δD(r − r′)ψ(r′) = rψ(r),

in this representation r̂ corresponds to multiplication by r. (Is this
obvious?) The operator r̂ is clearly Hermitean.
The representation of p̂ is

〈r|p̂|ψ〉 =

∫
dDpdDr′〈r|p̂|p〉 〈p|r′〉 〈r′|ψ〉 =

∫
dDpdDr′ pe

ip·(r−r′)/~ψ(r′)

=

∫
dDp pe

ip·rψ̃(p) = −

∫
dDp i~

d

dr
e
ip·r/~ψ̃(p) = −i~

d

dr
ψ(r).

(Is p̂ Hermitean?)
All functions of r̂ and p̂ can be constructed using these results.
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The Hilbert space

A problem

A change of basis can be constructed by using the completeness
relations—

〈p|ψ〉 =

∫
dDr 〈p|r〉 〈r|ψ〉.

1 How are states in this representation related to the wavefunction?

2 What is the representation of r̂ in this basis?

3 What is the representation of p̂ in this basis?

4 Check that the commutator [p̂, r̂] is independent of basis.
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The Hilbert space

The basic commutator

We evaluate the commutator [̂r, p̂] using the representations of the
operators in the chosen basis. The commutator itself is an operator which
acts on the space L2. We take a square integrable function f (r) and
evaluate the commutator on this—

[r̂j , p̂k ]f (r) = i~

(
drj f (r)

drk
− rj

df (r)

drk

)
= i~δjk f (r).

The commutator is then [r̂j , p̂k ] = i~δjk .
A straightforward induction can be used to show that

[r̂j , p̂
n
k ] = i~δjkn(p̂k)n−1. therefore [r̂j , f (p̂k)] = i~δjk f ′(p̂k).

The Baker-Campbell-Hausdorff relation is

e
A
e
B = exp

[
A + B +

1

2
[A,B] + · · ·

]
,

where the dots denote multiple commutators. This can be checked using
the Taylor expansion of the exponential.
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The Hilbert space

The translation operator

Consider the operator T̂ (x) = exp(−ix · p̂/~). Since p̂ is Hermitean, T̂ is
unitary (for real x). Also, since the p̂j commute amongst themselves, the

exponential factors into pieces T̂j(xj) = exp(−ixj p̂j/~). It is easy to check

that T̂−1
j (xj) = exp(ixj p̂j/~), so that T̂−1(x) = T̂ (−x). Also,

[r̂j , T̂ (x)] = xj T̂ (x).

If r̂|r〉 = r|r〉, then it follows that r̂T̂ (x)|r〉 = (r + x)T̂ (x)|r〉. This implies
that

1 T̂ (x)|r〉 = |r + x〉.

2 The eigenvalues of r̂ are continuous and infinite.

3 The Hilbert space is infinite dimensional.
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The Hilbert space

Groups

A group consists of a set of elements G = {gi} and an operation of
multiplication between them such that

1 If gi and gj are elements of G then so is the product gigj .

2 There exists an unique element called the identity such that Igi = gi .

3 For every element gi ∈ G , there is an unique element g−1
i ∈ G such

that gig
−1
i = I .

4 For gi , gj and gk in G , (gigj)gk = gi (gjgk).

The set {1, σ1} is a group under matrix multiplication. The elements of
the group commute. Such groups are called Abelian groups.
The set of all 2 × 2 unitary matrices is a group under matrix
multiplication. The elements of this group do not commute.
The translation operators T̂ (x) form a group. The group multiplication is
the action on an eigenstate of r̂. Since there is a continuous infinity of
elements, this is called a continuous group. It is an Abelian group.
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The Hilbert space

The Schrödinger equation

The quantum evolution equation

i~
d

dt
|ψ〉 = H|ψ〉,

when expressed in the eigenbasis of r̂ becomes the Schrödinger’s
equation—

i~
dψ(r)

dt
= Ĥψ(r), where Ĥ = −

~
2

2m
∇2 + V (r).

Here the Hamiltonian has been written out in the same representation
assuming that the potential is time independent, and the particle has mass
m.
If the Hamiltonian is symmetric under translations, then [Ĥ, T̂ (x)] = 0.
Since p̂ commutes with translations but r̂ does not, this implies that V (r)
must vanish. Thus, the problem reduces to that for free particles. The
solutions of the Schrödinger equation are then plane waves, since they are
eigenstates of translations.
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A free particle

A free particle

The free particle Hamiltonian is

Ĥ =
1

2m
p̂2 = −

~
2

2m
∇2,

and it embodies a system which is invariant under translations, as
discussed above. Since [Ĥ, p̂] = 0, these two operators can be diagonalized
simultaneously. Since the eigenstates of p̂ are non-degenerate (being the
plane-wave states), Ĥ is diagonalized in this basis. However, the
eigenvalues of Ĥ are doubly degenerate: E = p2/2m, having the same
value for ±p.
This “accidental” degeneracy argues for an extended symmetry of the
Hamiltonian. The symmetry that we have missed out in the above analysis
is parity. Parity transforms coordinates as Πr = −r. Clearly, it also
transforms Πp = −p. Acting on momentum eigenstates it must have the
representation Π|p〉 = |−p〉. Note that Π2 = 1 and hence the set {1,Π}
form a group. (Prove that Π is Hermitean and unitary)
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A free particle

Parity projections

Construct the operators

P+ =
1

2
(1 + Π) and P− =

1

2
(1 − Π).

P± are Hermitean since Π is Hermitean. They have the algebra P2
+ = P+

and P2
− = P− (thus the eigenvalues of these operators are 1 or 0). Such

operators are called projection operators. (A pure state density matrix
is a projection operator). One also finds that P+P− = P−P+ = 0, and
hence these two project on to orthogonal subspaces.
Any state |ψ〉 can be split into a positive parity state |ψ,+〉 = P+|ψ〉 and
a negative parity state |ψ,−〉 = P−|ψ〉. Since P+ + P− = 1, there is
nothing else.
Given the action of Π on p, one finds that [Ĥ,Π] = 0. For any momentum
eigenstate |p〉, one constructs 〈r|p,+〉 = cos(p · r)/

√
(2π)D and

〈r|p,−〉 = sin(p · r)/
√

(2π)D . Thus, the operators Ĥ, Π are completely
diagonalized in the basis |p,±〉. We will use this basis from now on. Note
that p̂ is no longer diagonal.
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A free particle

Wave packets

We have constructed solutions of the Schrödinger equation for free
particles. However, these solutions are plane waves, and therefore not in
L2. In order to construct properly normalized wave functions we can
proceed in any one of two ways.
The first is to construct linear combinations of plane waves which are in
L2. These are called wavepackets—

ψ(t, r, λ) =

∫
dDpψ̃(p, λ)e−iEt/~〈r|p, λ〉,

(where λ = ±1). Note that the wavepackets are no longer eigenstates of
the Hamiltonian. However, we have arranged for them to be eigenstates of
the parity operator. This means that the packets generically have even
number of maxima which approach each other (or recede from each other)
in time.
Construct the expectation value of the momentum operator in any
wavepacket, and show that the average velocity is related to the
group velocity of the packet.
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A free particle

Particle in a box

The second method is to restrict the wavefunctions to lie within a box,
|r| ≤ L. By imposing the conditions ψ(r) = 0 and ψ′(r) = 0 at the edges
of the box, one picks only a subset of all possible momenta: one deals with
Fourier series instead of Fourier integral transforms. However, the
eigenstates of the Hamiltonian are square integrable.
One can find the expectation values of all operators in the problem for any
finite value of L, and take the limits of these expectation values as
L → ∞. Since physics is only concerned with observables and not with
wavefunctions, this procedure is perfectly well defined.
Note that we have broken the translation symmetry of the Hamiltonian
explicitly but we can still retain the parity symmetry. Thus the
eigenfunctions of the Hamiltonian are |p,±〉 where pj = 2πnj/(2L). The
imposition of the boundary conditions on the wavefunction at the
boundaries of the box has given rise to quantization of the energies:

E = (π/L)
√∑D

j=1 n2
j .
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A free particle

Some points of note

If one wants to construct wavepackets with a single maximum, then
one is forced to construct a linear combination of the two parity
states. Then it is easier to work in the momentum basis.

Note that states need not have the symmetry of the Hamiltonian:
wavepackets are neither translationally invariant, nor need to be
states of good parity.

The construction of eigenstates of the Hamiltonian in a box solves the
problem that the basis states lie outside the Hilbert space being
constructed.

Note that the expectation values of the velocity and position for each
of the eigenvectors in a box vanishes. One can still construct
wavepackets, and such wavepackets will have finite velocity in general.

Both methods of “regularization” of the problem break the
translational symmetry of the problem.
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representations discussed in this lecture.
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contains chapters on matrices and Fourier transforms which will be
useful throughout this course.
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