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Quantum mechanics in one space dimension

General considerations

We consider Schrödinger’s equation in one space dimension with a
time-independent potential—

i~
∂ψ(x , t)

∂t
= V (x)ψ(x , t) − ~

2

2m

∂2ψ(x , t)

∂x2
.

Note that ~/
√

2mE (and ~/
√

2mV ) have the dimensions of a length.
The solutions can be expanded in a complete basis of plane waves:
φ(x , t) = exp[i(px − Et)/~]. The eigenvalue equation can be formally
written as 2m(E − V ) = p2.
When E < V , one finds that p is imaginary, and the eigenfunction is
exponential. Real values of p (and hence pure plane waves) are obtained
when E > V . When p > 0, the wave moves towards increasing x and is
called a right-moving wave. When p < 0 the wave moves to the left.
The length scale

√

2m(E − V )/~ is the wavelength when it is real.
Otherwise the length scale

√

2m|E − V |~ is the range of the wave
function.
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Quantum mechanics in one space dimension

Degeneracy of eigenvalues

Since Schrödinger’s equation is a second order differential equation, the
eigenvalue equation for stationary states can be written as the set

dψ(x ; E )

dx
= φ(x ; E ), and

dφ(x ; E )

dx
=

2m[E − V (x)]

~2
ψ(x ; E ).

Thus, specification of φ(x ; E ) and ψ(x ; E ) at any point allows us to find
the values of these functions anywhere, through the above equations.
Writing the above equations in the matrix form

d

dx

(

ψ
φ

)

=

(

0 1
2m(E − V )/~2 0

)(

ψ
φ

)

,

formally, the eigenvalues of the matrix equation give p/i~. Since the trace
of the matrix vanishes, the two “eigenvalues” come with opposite sign.
Thus, each energy eigenvalue is doubly degenerate.

Sourendu Gupta (TIFR Graduate School) Simple one-dimensional potentials QM I 5 / 16



A potential step

Outline

1 Quantum mechanics in one space dimension

2 A potential step

3 A potential barrier

4 References

Sourendu Gupta (TIFR Graduate School) Simple one-dimensional potentials QM I 6 / 16



A potential step

A step potential

Consider a particle moving in a potential step:

V (x) = V0Θ(x) =

{

0 (x < 0),

V0 (x > 0).

We will take V0 to be positive. Hence, at x = 0 there is an impulsive force
directed to the left. Classically, if the particle has kinetic energy less than
V0, it is reflected. If the initial kinetic energy is larger than V0, then the
particle slows down as it crosses the barrier.
The discontinuity in the potential does not invalidate the conditions
discussed previously. The energy eigenstates ψ(x ; E ) are continuous across
x = 0, as are the derivatives ψ′(x ; E ). In each of the force-free regions,
x < 0 and x > 0, one can try the plane wave solutions. In each of these
segments, the general solution is a combination of left and right moving
waves.
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A potential step

Matching conditions

The wavefunction is

ψ(x ; E ) =

{

A1e
ikx + B1e

−ikx (x < x0, k =
√

2mE/~),

A2e
ik

′
x + B2e

−ik
′
x (x > x0, k ′ =

√

2m(E − V0)/~),

where x0 = 0. When E > V0 we see that k ′ is real, in agreement with
classical reasoning.
At x0 the two halves of the wavefunction and its derivatives must be
matched up. The matching conditions are

M(k , x0)

(

A1

B1

)

= M(k ′, x0)

(

A2

B2

)

, where M(k , x0) =

(

z 1
z

ikz − ik

z

)

,

where we have used the shorthand notation z = exp(ikx0).
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A potential step

A transfer matrix

We can now write down a transfer matrix across the discontinuity—
(

A1

B1

)

= T (k , k ′, x0)

(

A2

B2

)

, and T (k , k ′, x0) =

(

α+z ′/z α−/zz
′

zz ′α− α+z/z ′

)

,

where z = exp(ikx0), z ′ = exp(ik ′x0) and α± = (1 ± k ′/k)/2. This
transfer matrix connects the coefficients on the left to those on the right.
The inverse transfer matrix can be obtained by interchanging k and k ′.
When there is an incoming wave on the left of x0. There is then a
reflected wave on the left and a transmitted wave on the right. Since there
is no incoming wave on the right, B2 = 0. The reflection coefficient is
R = |B1/A1|2. From the transfer matrix above, we find

R =

∣

∣

∣

∣

k − k ′

k + k ′

∣

∣

∣

∣

2

.

When E ≫ V0, we find that R → 0, and for E ≤ V0 one has R = 0. The
transmission coefficient is T = 1 − R.
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A potential step

Quantum vs classical

1 In the classical theory, the particle is always transmitted across the
barrier when E > V0. In the quantum theory, there is always a
reflected wave. The amplitude of this wave decreases with increasing
E .

2 In the classical theory the particle is instantaneously transmitted when
E > V0. In the quantum theory the relative phase angle between the
incident and transmitted wave at the barrier is exp[i(k − k ′)x0].
This phase angle is immaterial, as can be seen by the fact that it can
always be shifted to zero by a choice of x0. Hence the transmission is
instantaneous.

3 In the classical theory, the particle is always reflected when E < V0.
Since R = 1, this is also true of the quantum theory.

4 In the classical theory, sub-barrier reflection is instantaneous. In the
quantum theory T21 has a relative phase angle which is negative.
(Compute this) This means that the reflection is delayed.
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A potential step

Universality: a quantum phenomenon

Deform the step barrier to any general barrier—

V (x) =

{

0 (x < −a)

V0 (x > a),

and any shape in the range |x | < a. In this potential, consider incoming
waves with E → 0 on the left. The wavelength of such waves is

√
2mE/~,

and is much larger than a. The range of the wavefunction “under” the
barrier is then r =

√
2mV0/~. When r ≫ a, then the wave cannot possibly

resolve the detailed shape of the potential, and one must have R = 1.
This result seems to be universal in the limit k → 0 and r ≫ a.

V V V3210

V V V0 0 0

00
(x) (x) (x)

Check. Any caveats?
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A potential barrier

The potential

Consider the potential

V (x) = V0 [Θ(a − x) − Θ(x + a)] =

{

0 (|x | > a),

V0 (|x | < a),

where V0 > 0. This is a finite potential barrier. Choose the trial
wavefunction

ψ(x ; E , λ) =











A1e
ikx + B1e

−ikx (x < −a)

A2e
ik

′
x + B2e

−ik
′
x (|x | < a)

A3e
ikx + B3e

−ikx (x > a)

where k =
√

2mE/~ and k ′ =
√

2m(E − V0)/~. Using the transfer matrix
twice, and choosing B3 = 0 as before, one finds the reflection coefficient

R =
(k2 − k ′2)2 sin2(2ka)

4k2k ′2 + (k2 − k ′2)2 sin2(2ka)
.
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A potential barrier

Resonances: a quantum phenomenon

In terms of the dimensionless quantities ρ = ka and ρ′ = k ′a, the reflection
coefficient for the square barrier is

R =
(ρ2 − ρ′2)2 sin2(2ρ)

4ρ2ρ′2 + (ρ2 − ρ′2)2 sin2(2ρ)
.

The wavelength of the incident wave (2π/k) is an exact multiple of the
barrier width whenever 2ρ = 2nπ. For such energies, one finds that R = 0
and T = 1. These energies, E ∗

n = n2π2
~

2/(2ma2), are called resonances.
Since ρ2 − ρ′2 = 2mV0a

2/~2 = γ2 is independent of the energy, in the
vicinity of a resonance, i.e., for 2ρ = 2nπ + δ, one finds that
R ≃ γ4δ2/16n4π4 ∝ δ2. The power of δ is universal in the sense that it
does not depend on the particular resonance, i.e., it is independent of n.
However, the constant of proportionality depends on n. Can you trace
this universality to an argument about length scales?
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given in Section 2 of the paper “How to Renormalize the Schrodinger
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