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The square well

The square well potential and trial wavefunction

We consider the potential

V (x) = V0 [Θ(a + x) − Θ(a − x)] =

{

0 (|x | > a),

V0 (|x | < a).

If V0 > 0 then this is the square potential well. Classically it has bound
states with all possible energies 0 ≤ E ≤ −V0, and every positive energy
state is unbound. Since V (x) is even under parity, the wavefunctions may
also be reduced under parity.
Since bound state wave functions must be normalizable, they have to fall
off at infinity. Then, a trial wavefunction of parity λ is

ψ(x ; E , λ) =















A1e
kx (x < −a)

A2

(

e
ik

′
x + λe

−ik
′
x

)

(|x | < a)

λA1e
−kx (x > a)

where k =
√

2mE/~ and k ′ =
√

2m(E + V0)/~.
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The square well

Dimensionless variables; eigenvalues from matching

Introduce the dimensionless variables

r2 =
2mV0a

2

~2
and z =

E

V0

= −
(

ka

r

)2

=

(

k ′a

r

)2

− 1.

The inverse relations are—

ka = r
√
−z and k ′a = r

√
1 + z .

The quantity r parametrizes the potential. Solving the eigenvalue equation
amounts to finding z .
Since the matching conditions at x = ±a give the same results, it is
sufficient to examine the conditions at x = −a. These give the eigenavalue
equation

k =

{

k ′ tan k ′a (λ = 1)

k ′ cot k ′a (λ = −1),
or

( −z

1 + z

)λ/2

= tan r
√

1 + z .

Since the eigenvalue equation does not see E , V0 and a separately, but
only the combination z and r , there is a degree of universality about the
results.Sourendu Gupta (TIFR Graduate School) Simple one-dimensional potentials QM I 5 / 18



The square well

Solving for the eigenvalues
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The eigenvalues occur whenever the left and right hand sides of the
equation cross. The number of eigenvalues increases when r increases
(plot on left: r = 10, on right: r = 100). There are an infinite number of
eigenvalues when r → ∞. As r decreases, the levels move up (why?) and
at a critical r∗ one level disappears. As r decreases further, other critical
values of r may be reached. For sufficiently small r there may be no bound
states.
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The square well

Universality in the square well potential

When the binding energy is very small, the range of the wavefunction is
large. In this case, the detailed shape of the potential cannot be seen by
the wavefunction. Thus we expect some level of universality about the
problem.
The critical values of r∗ are

r∗ =

{

nπ (λ = 1)

(n + 1

2
)π (λ = −1).

In the neigbourhood of these potentials, r = r∗ + δ, one finds from the
eigenvalue equations that E ∝ δ2. The power is independent of n and λ.
The RMS radius of the wavefunction is

〈x2〉 = 2

∫

a

0

dxx2|ψ(x)|2 + 2

∫ ∞

a

dxx2|ψ(x)|2 ≃ 1

k2a2
∝ (r − r∗)

−2

where we have used the fact that the second integral dominates when the
range is large. (Check by explicit integration)
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Transfer and scattering matrices

The transfer matrix for short range potentials

Consider any potential V (x) with a finite range, i.e., V (x) = 0 for
|x | > a. Consider a wavefunction which is an incoming plane wave for
x < −a,

ψ(x ; k) =

{

e
ikx (x < −a)

Ake
ikx + Bke

−ikx . (x > a)

For any real potential, if ψ(x) is a solution of Schrödinger’s equation, then
so is ψ∗(x) (prove). Hence, the outgoing plane wave on the right,
ψ∗(x ; k), is also a solution. A general solution is therefore the
superposition

ψ(x) =

{

A1e
ikx + B1e

−ikx (x < −a)

A2e
ikx + B2e

−ikx . (x > a)

Using the definitions of ψ(x ; k) and ψ∗(x ; k), one obtains the
(

A2

B2

)

= M

(

A1

B1

)

, where M =

(

Ak B∗
k

Bk A∗
k

)

.
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Transfer and scattering matrices

The probability current; reflection and transmission

The probability current, J = (ψ∗p̂ψ + ψp̂†ψ∗)/(2m) obeys the continuity
equation (prove)

dP

dt
+

dJ

dx
= 0, where P = |ψ|2.

For any stationary state, since the time dependence vanishes, J is the
same at all points.
For the finite range potentials that we are working with, one finds that
J = (~k)(|Ai |2 − |Bi |2)/(2m). Using the relation expressed through the
marix M above, we find that this gives |Ak |2 − |Bk |2 = 1, i.e., Det M = 1.
The reflection and transmission coefficients are

R =

∣

∣

∣

∣

Bk

Ak

∣

∣

∣

∣

2

= 1 − T where T =
1

|Ak |2
.

Clearly |Ak |2 ≥ 1. Resonances occur when R = 0, i.e., when |Ak |2 = 1.
The barrier is perfectly reflecting when |Ak |2 → ∞.
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Transfer and scattering matrices

The scattering matrix for a short range potential

The scattering matrix connects the incoming waves to the outgoing waves,
and hence can be constucted by rearranging the elements of the transfer
matrix. A straighforward bit of algebra shows that

(

A2

B1

)

= S

(

A1

B2

)

, where S =
1

A∗
k

(

1 B∗
k

−Bk 1

)

.

It is easy to check that S is unitary from the fact that |Ak |2 − |Bk |2 = 1.
In other words, probability conservation leads to an unitary S-matrix.
At a resonance, |Ak |2 = 1, and hence |Bk |2 = 0. Hence, the resonance
condition leads a diagonal S-matrix, i.e., at resonance, an incoming plane
waves on the left becomes an outgoing plane wave on the right with a
phase shift, and an incoming plane wave on the right becomes an outgoing
plane wave on the left with the opposite phase shift. This is exactly the
condition that R = 0. When T = 0, the S-matrix is off-diagonal.
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Periodic potential

Bloch’s theorem for periodic potentials

If the potential is periodic, V (x) = V (x + x0), then finite translations
T (x0) commute with the Hamiltonian. Hence finite translations and the
Hamiltonian can be diagonalized simultaneously. If ψ(x) is such an
eigenfunction, then T (x0)ψ(x) = λψ(x). Also, T n(x0)ψ(x) = λnψ(x).
Hence λ = exp(iKx0) for some choice of K . Hence, any eigenfunction in
the period potential has the form ψ(x + nx0) = exp(iKnx0)ψ(x). The last
statement is Bloch’s theorem in one dimension. It is a statement of the
fact that finite translations constitute an Abelian group. The value of K

depends on the boundary conditions one chooses.
The generalization to arbitrary dimensions is straightforward. If T (R) is a
translation by a lattice vector and T (R′) that by another lattice vector,
then T (R)T (R′)ψ(r) = ψ(r + R + R′) = T (R′)T (R)ψ(r). Hence the
group is Abelian in any dimension. Therefore, if the Hamiltonian
commutes with these finite translations, then the eigenfunctions of the
Hamiltonian must be of the form ψ(r + R) = exp(iK · R)ψ(r).
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Periodic potential

The step transmission matrix in one dimension

2a l

We consider a periodically repeating short ranged potential with range of
2a and spacing l between the end of one unit of the potential and the
beginning of the next (hence x0 = l + 2a). The wavefunction at any point
where the potential vanishes is a superposition of a left moving and a right
moving plane wave: Ai exp(ikx) + Bi exp(−ikx). A matrix Q connects this
to the wavefunction at x + x0. This matrix is

Q =

(

z 0
0 1

z

)

M =

(

zAk zB∗
k

Bk

z

A
∗

k

z

)

, where z = exp(ikl).
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Periodic potential

Eigenvalues of Q and the transmission coefficient

The characteristic equation for Q is

λ2 − 2RezAkλ+ 1 = 0.

The solutions have the following form—
1 If 1 ≤ RezAk , then the two eigenvalues are real, and λ1 ≥ 1 ≥ λ2.
2 If 1 > RezAk , then the two eigenvalues are pure phases:
λ1 = exp(iχ) and λ2 = exp(−iχ).

If UQU† is diagonal, then

QN = U†

(

λN
1

0
0 λN

2

)

U.

The transmission coefficient through these N copies of the potential is
given by the inverse of the 11 component of QN . Hence

1/TN = λN

1 cos2 θ + λN

2 sin2 θ.

Here θ depends on the eigenvector |λ1〉.
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Periodic potential

Energy bands in one-dimensional periodic potentials

zAk

Allowed

1 If 1 ≤ RezAk , then the two eigenvalues are real,
and λ1 ≥ 1 ≥ λ2. Then λN

1
≫ 1 ≫ λN

2
. As a

result, the transmission coefficient drops to zero as
N → ∞. These values of zAk correspond to band
gaps. In the very special case of λ1 = λ2 = 1 the
transmission coefficient goes to unity. This is the
case of Bragg diffraction.

2 If 1 > RezAk , then the two eigenvalues are pure
phases: λ1 = exp(iχ) and λ2 = exp(−iχ). In this
case TN = 1/(cos2 θ + cos 2Nχ sin2 θ), and this
goes to some finite value as N → ∞. Thus, these
values of zAk correspond to allowed energy
bands.
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2 Quantum Mechanics (Vol 1), C. Cohen-Tannoudji, B. Diu and F.
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