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The harmonic oscillator
The Hamiltonian for a harmonic oscillator

The harmonic oscillator is a system which obeys, Hooke's law, i.e., the
force on the oscillator is proportional to the displacement from its
equilibrium position and points towards that position. Hence the potential
is V(x) = mw?x?/2. The harmonic oscillator Hamiltonian is

2
The Hamiltonian above describes ellipses in phase space: this is the
classical motion of harmonic oscillators. Both the position and the
momentum vary with time harmonically, hence the name.
The quantum Hamiltonian is obtained as usual by using the operator
forms for p and x. In terms of the dimensionless quantities

[ mw 1 hw
X=,/—x and P=-——p, onehas H=—(P?>+X?).
h \/mwhp 2 ( )

Note that [X, P] = i; a result which follows from the canonical

commutator.
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The harmonic oscillator

Examples

© Near the minimum of any smooth potential, one can approximate the
potential by its Taylor expansion:
V(x) = V(xo) + V"(x0)(x — x0)?/2 + - - -, where xp is position of the
minimum, i.e., the point where the first derivative vanishes. Low-lying
vibrational modes of molecules show almost harmonic spectrum as a
result of this general fact.

© Complicated many-body interactions in a nucleus can be expanded in
a similar Taylor series to give a central potential which is
approximately harmonic. The addition of simple extra terms in the
Hamiltonian then explain the spectra of many complex nuclei.

© The motion of a charged particle in a magnetic field is a disguised
version of a harmonic oscillator. Since the particle travels in a helical
path around the field lines, the momentum components transverse to
the field lines play the roles of X and P.
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The harmonic oscillator

Example: normal modes and field theories

The vibrations of rigid solids gives a theory of many independent harmonic
oscillator. A linear chain of N atoms bound to each other has the lowest

order potential
N

V = —E Z(X,‘ —X,‘+1)2 + -
i=1

Assume that the chain closes on itself, so that xy41 = x1. Fourier
transforming the coordinates x; then decomposes the coupled Hamiltonian
into a sum proportional to >, x,f. Thus, the coupled problem decomposes
into a sum of N independent harmonically oscillating Fourier models. This
is an example of a classical field theory.
Quantizing the Fourier modes gives a simple first quantized field theory. If
one wants to take into account the cubic, quartic etc., terms in the
potential then these higher order terms can be treated as couplings
between the oscillator modes.
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The harmonic oscillator

Raising and lowering operators

Construct the operators

a= \%(X +iP), and  al = —=(X —iP).
Both a and a' are non-Hermitean, and are conjugates of each other. The
commutator, [a,al] = 1, follows using that for X and P. Now consider the
Hermitean operator Nl = a'a. One sees that [N, a] = —a and [N, af] = a'.
If |z) is an eigenvector of N with eigenvalue z, then [N, al|z) = —alz), and
hence Na|z) = (z —1)alz), i.e., a lowers the eigenvalue of N by one unit.
Using the other commutator, one can show that a' raises the eigenvalue of
N by one unit. .
For any [¢), let |¢) = al¢)). Since (¢]¢) > 0 and (6]6) = (| N|4:), one
finds that every eigenvalue of N must be greater than or equal to zero. If
the eigenvalues of N are not integers, then there cannot be a lower bound
to the eigenvalues, since a will always lower the eigenvalue by one unit.
So, there is a vector |0) such that a|0) = 0, and N|0) = 0.
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The harmonic oscillator

The eigenvalues of the Hamiltonian

One finds that

N

1 1 o1
5 (X=iP)(X+iP) = §(X2+P2—1), hence  H = hw </\/ + 2) :

Thus, the eigenvalues of H are E = hw(n+ 1/2), for integer n > 0. The
lowest state satisfies

<n;iwx + CZ() Yo(x) =0, ie., ¢o(x)xexp <_ mwX2> |

2h

Since this is a first order differential equation, there is an unique solution.
Thus, the lowest eigenvalue of N (and hence, of H) is unique. Then, by
induction with a' we can show that none of the states are degenerate.

If |[n — 1) = cpa|n), then (n—1|n — 1) = |cy[®n{n|n). If [n —1) is
normalized, then normalization of |n) requires ¢, = 1/y/n. Then

n) = aln — 1)/v/a = (a)7[0)/v/n
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The harmonic oscillator

All wavefunctions at one go

The generating function for the wavefunctions is—

N Z ) = 0 )

Now, from the Baker—CampbeII—Hausdorff formula, we find that
exp(za') = exp(zX/v/2) exp(—izP/\/2) exp(—z2/4). Hence

2
G(z;x) =exp (—24 + zx4 / r;h > (x|~ ZP/V2|ypp).

Then using the action of the exponential on the bra, and the normalized
ground state wavefunction

o) = () emmerran

we find that
2

mw\ 1/4 mwx 2mw z2
G(Z'X)_(E) &P (_ on VTR ZX_2>'
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The harmonic oscillator

The Hermite polynomials

Define the function f(x) = exp(—x?) and its n-th derivative,
F(N(x) = (=1)"Ha(x) exp(—x?). The H,(x) are called Hermite
polynomials (prove that they are polynomials). By direct
differentiation one can obtain the recurrence relation

d
Hn(x) = |:2X - dx} Hp—1(x).
From the definition of the Hermite polynomials it is clear that
X _n
—22 zX X2 4
e E T — X f(x - 2)* = Z HH,,(X).
n=0
From the recurrence relation we can write down the explicit forms—
Ho(x) = 1
Hi(x) = 2x
Ho(x) = 4x®—-2.

Note that the even numbered polvnomials have even paritv.
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The harmonic oscillator

The harmonic oscillator wave functions

Comparing the recurrence relation for harmonic oscillator wave functions

1/4 2 2
G(z;x) = <%> exp <— mex + 2musz — Z)

mh 2h h 2

with that for Hermite polynomials,

e—z2+22X — exzf(X — 2)2 = Z iHn(X)’

n!
n=0
we find that va 1
_(m /2
val¥) = (25 e (X)X

Note that the parity flips for every successive n. The wavefunction v,
(and hence the Hermite polynomial, H,) has exactly n zeroes. The zeroes
of successive polynomials are interleaved. The Hermite polynomials are
orthogonal under the measure dx exp(—x2).
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The harmonic oscillator

Classical-quantum correspondence

Since X = (a+af)/v/2 and P = —i(a— a')/+/2, and the operators a and
a' have vanishing diagonal elements in the eigenbasis of N, it is clear that
(n|X|n) = (n|P|n) = 0. Squaring each of these operators, we find that
(n|X2|n) = (n|P?|n) = n+ 1/2. Clearly, then one has (V) = (T) = E/2.
These relations are the same as for a classical harmonic oscillator.

The commutators [H, X] = —iP and [H, P] = iX follow from the
commutators of N with a and af. Then

d(X) d iHt —iHt i

o = g Wl X M) = i([H, X))
= hw(P)

d{p) _

Dl —hw(X).

These equations are the same as the classical Hamilton's equations.

Sourendu Gupta (TIFR Graduate School) Simple one-dimensional potentials QM | 12 /24



The harmonic oscillator
Schrodinger and Heisenberg pictures

We have chosen a representation of quantum evolution in which the
operators corresponding to time-independent classical variables remain
time independent, and the states evolve by the action of the unitary
evolution operator. This is called the Schrodinger picture of quantum
dynamics.
Observables (¢/'(t)|O|y(t)) are time dependent through unitary evolution
of states (¢(0)|UT(t)OU(t)[+»(0)). Therefore they remain unchanged if
we use the Heisenberg picture, in which states are time independent and
operators evolve with time through the adjoint action of the unitary
evolution operator. The time evolution of expectation values can be
computed exactly as for the harmonic oscillator. Since the analogous
equations hold in any state, one can interpret this as the operator
evolution equation in the Heisenberg picture—

do

g = I[H, O]
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The harmonic oscillator

The thermal density matrix

For a single harmonic oscillator placed inside a heat bath, one finds the
partition function

B > hosn  exp(—hwB/2)
Z(B) = Tr exp(—HpJ) = e~ B/2 Ze e = 1 — exp(—hwp)’

n=0

where 3 =1/kgT. Since p(T) = exp(—H[3)/Z, the expectation value of
the energy is

1 1dZ  dlogZ
“”:?ﬁHwMﬂﬁﬂz—fagz_‘ﬁ

Using the expression for Z above, we get

1 hw
Hy = “hw+ ——o
(H) 2 exp(fwp) — 1
The Planck spectrum begins to emerge.
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A charged particle in a magnetic field

The classical theory

The Hamiltonian of a particle of charge e and mass m in a magnetic field is
1

H:%(PfeA){ B=VxA.
The classical equations of motion which follow from this are
dr p dp e
— == — = — B.
da m’ it mP”

Taking the z-direction to be the direction of B, we obtain, p,(t) = p,(0), and

d (pc) _ . Px
dt (py> B <py> ’

where the cyclotron frequency is given by w = eB/m. On scaling the time by a
factor w, it is clear that these equations of motion can be obtained from a
fictitious Hamiltonian H' = (pZ + p})/2. The harmonic solutions are obtained
from the above equations by an unitary transformation to p+ = (px + ipy)/\@.
The solutions are py(t) = p+(0) exp(Fiwt). Since the phase space is 6d and the
motion is integrable, there are three conserved quantities: E, p, and |py].
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A charged particle in a magnetic field

Quantization

Introduce P = p — eA. Then [P, Pi] = i€jiyB). With the choice made of
the coordinate axes, one sees that [P;, P,] = 0 for all j. Since H = P?/2m,
this implies that [H, P;] = 0. The remainder of the Hamiltonian is

H = (P24 P2)/2m,  where [Py, P)] = ieB.

Since [H, H'] =0, N is a conserved quantum number. Therefore the
Hamiltonian is exactly that of the harmonic oscillator. The eigenvalues are
called Landau levels, and are given by

h? 1
E(N, k) = 5 -k +hw (N +7 ).

The third operator which commutes with H has a continuous spectrum,
hence the Landau levels are infinitely degenerate. (Find the third
commuting operator)
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The isotropic two-dimensional harmonic oscillator

Outline

© The isotropic two-dimensional harmonic oscillator

Sourendu Gupta (TIFR Graduate School) Simple one-dimensional potentials QM | 18 / 24



The isotropic two-dimensional harmonic oscillator

The energy eigenvalues and eigenvectors

The isotropic harmonic oscillator in two dimensions is specified by the two position
variables x; and x; and the two conjugate momenta p; and p;. Isotropy implies
that the angular frequency, w is the same in all directions. Then introducing the
scaled quantities X; = x;v/mw/h and P; = p/v/ mwh, one has the Hamiltonian

_ hw

2

H (P7 + P53 + X2 + X3).

Introducing the shift operators a; = (X; + iP;)/v/2 and their Hermitean
conjugates, aJT, as before, one can show that H can be written in terms of two
number operators N; = aJTaJ- in the form H = hw[(M +1/2) + (N2 +1/2)]. As a
result, the energy eigenstates can be specified in the form |ny, ny) where n; are
the eigenfunctions of N;. The energies of these states are E = hw(ny + na + 1).
Equivalently, one could write the eigenstates as |, n;) and energies as

E = hw(N + 1). Since n; does not enter the expression for the energy, and it has
the range 0 < ny < N, the eigenvalue is (N + 1)-fold degenerate. Therefore there
is a larger symmetry in the problem.
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The isotropic two-dimensional harmonic oscillator

Extended symmetry

The degeneracy of the states, |N, n;) due to the multiplicity of n; means
that if one changes n; and ny simultaneously, while keeping N = n; + n»

fixed, then the energy does not change. An operator of the form aIaz does

precisely this. The two Hermitean operators s; = aiaz + agal and

Sy = iaJ{ag — ia;al acting on a level |N, n1) produce linear combinations of
|N,ni — 1) and [N, n; + 1). Check this logic by evaluating [H, s;] and
[H, s2]. Construct the full algebra using [s1, 5], and commutators
with any new operators formed in this process)

This process generates the combinations sy = Ny + No, s1, s» and

s3 = N1 — N>. The commutation relations between these operators is the
same as that between Pauli matrices. (Check that in the subspace of
E = 2hw these operators are exactly the Pauli matrices). However,
when acting in the eigenspace of larger values of E, the opertors are
represented by larger matrices. Compute the operator S2 = s? + s2 + 53% in
the degenerate subspace of any E. Also compute the matrix representation

of s3 in this subspace.
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The isotropic two-dimensional harmonic oscillator

The symmetry group SU(2)

An arbitrary (new) linear combination of the degenerate eigenstates of the
isotropic two-dimensional harmonic oscillator is generated by the unitary

matrix U = exp (izj 0j5j>. Note that Det U = 1 (because the trace of its

logarithm is zero). Since these linear combinations all have the same
energy, all these U must commute with the Hamiltonian.

In particular, this is true of the two-dimensional subspace with N = 1. All
2 x 2 unitary matrices with unit determinant form a group. This is called
the group SU(2). Since all these matrices commute with H, the
symmetry group of this problem is SU(2). The higher dimensional
matrices generated by the above prescription do not exhaust all possible
unitary matrices of that size, but a subgroup which is isomorphic to SU(2).
These matrices of different sizes are called different representations of
SU(2). The trace of S? in each representation is characteristic of that
representation. The Hermitean operators si, s» and s3 are called the
generators of SU(2), or elements of the algebra su(2).
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The isotropic two-dimensional harmonic oscillator
A problem

Consider the isotropic harmonic oscillator in three dimensions. In analogy
with the construction we have presented here, find the complete group of
symmetries of this problem: it is called SU(3).
© Construct the complete algebra of operators from Hermitean
combinations of the bilinears of the shift operators which leave the
energy unchanged.
© Find the commutators of these operators, and construct the
completion of this algebra. How many operators are there in the
algebra?
Find a complete set of commuting operators among these.

© 0

In the degenerate space of eigenstates corresponding to the energy
eigenvalue E = 5hw/2, construct the representations of the elements
of the algebra.

© Construct the representation of the algebra in the space of energy
eigenstates with eigenvalue E = 7hw/2.
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© Quantum Mechanics (Non-relativistic theory), by L. D. Landau and E.

5]

M. Lifschitz. The material in this lecture are scattered through
chapters 3 and 15 of this book. The later chapter deals with the topic
of Landau levels.

Quantum Mechanics (Vol 1), C. Cohen-Tannoudji, B. Diu and F.
Laloé. Chapter 5 of this book discusses the harmonic oscillator. Read,
in particular, the many applications of this model potential.

Solid State Physics, by N. W. Ashcroft and N. D. Mermin. Chapter
14 of this book deals with the many applications of Landau levels to
solid state physics phenomena.

The article by M. Harvey in the book Advances in Nuclear Physics,
vol 1 (Plenum Press, New York) discussed the Elliott Model, which is
an application of the SU(3) symmetry of the three dimensional
harmonic oscillator to problems in nuclear physics.

Classical groups for Physicists, by B. G. Wybourne. This book is
highly recommended for a good exposition on- Lie .groups.
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