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Conventions

1 From now on we will use units with ~ = 1. As discussed in the
previous lecture this will mean [E ] = T−1, [J] = 1 and
[e2] = LT−1.

2 We shall understand the difference between operators and
eigenvalues in context. The notation with the hat over a
symbol will not be used.

3 Instead we will use the notation x̂ to mean the unit vector in
the direction of the vector x.

4 For the Coulomb problem we will use the definition of the
Bohr radius a0 = 1/Me2 and the Rydberg, R = Me4/2.
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The two-body problem

Consider two particles, at positions r1 and r2, which interact
through a rotationally invariant potential, V (r), where r = |r| and
r = r1 − r2. The Hamiltonian is

H2 =
p21
2m1

+
p22
2m2

+ V (r),

where operators acting on different particles commute.
We decompose the momenta into the pieces

P = p1 + p2 and p =
m2p1 −m1p2
m1 +m2

.

Then, defining the reduced mass, M = m1m2/(m1 +m2), one can
decompose the Hamiltonian as H2 = Hcm + H, where

Hcm =
P2

2(m1 +m2)
and H =

p2

2M
+ V (r).

Now, r and p satisfy canonical commutation relations. (check)
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A tensor decomposition

Use L = r × p, then Hcm, H, L2 and Lz commute with each other.
(check) The states Hcm |Ecm〉 = Ecm |Ecm〉, are free particle states,
since there is no potential in the coordinate conjugate to P. Also

H |Elm〉 = E |Elm〉 , L2 |Elm〉 = l(l+1) |Elm〉 , Lz |Elm〉 = m |Elm〉 .

Since [H,L] = 0, we find that H{L+ |Elm〉} = E{L+ |Elm〉}. As a
result, E does not depend on m, although it can depend on j .
Thus each energy level is at least (2j + 1)-fold degenerate. If there
is a higher degree of degeneracy, then there is possibly a hidden
symmetry.

Since [P,p] = [P, r] = 0, the basis of states is the direct product
|Ecm〉 ⊗ |Elm〉. Usually one is interested in the eigenvalues E and
the relative wavefunction

〈r|Elm〉 = ψElm(r) = ΨEl(r)Y
l
m(r̂).
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The radial momentum

Define the radial momentum

pr =
1

2
(r̂ · p+ p · r̂) =

1

r
(r · p− i) → −i

(

∂

∂r
+

1

r

)

.

Note also that
(

d

dr
+

1

r

)

u(r)

r
=

1

r

du

dr
,

so writing ΨEl(r) = uEl(r)/r , the kinetic energy term becomes

−
p2r
2M

ΨEl(r) = −
1

2M

d2

dr2
uEl(r).

Clearly, one must have uEl(0) = 0 in order to have a normalizable
wavefunction ΨEl(r).
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The effective potential

It is straightforward to show that

L2 = (r × p) · (r × p) = r2(p2 − p2r ).

Hence, the one can write H = (p2r + L2/r2)/(2M) + V (r). The
differential equation satisfied by the radial part of the wave
function is then

[

−
1

2M

d2

dr2
+

l(l + 1)

2Mr2
+ V (r)− E

]

uEl(r) = 0.

In this form the equation looks like a quasi-one-dimensional
equation with an effective potential which is

Veff (r) = V (r) +
l(l + 1)

2Mr2
.

The extra term is positive, and infinite as r → 0. It acts like a
barrier, for l > 0, and prevents particles from probing the region
near r = 0. It is sometimes called the centrifugal barrier.
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The radial solution

Since u(r) is regular as r → 0, it must vanish as some positive
power of r , i.e., u(r) → Cr z . This is just that part of the solution
which has the slowest approach to zero. Substituting this into the
radial differential equation, one finds

−
1

2M
{z(z − 1)− l(l + 1)} r z−2 +O(r z) = 0.

The coefficient of each power of r has to be equated to zero, and
hence z(z − 1) = l(l + 1). The only positive solution is z = l + 1.
Hence, the regularity condition at r = 0 reduces to

uEl(r) = r l+1yEl(r), where yEl(0) 6= 0.

With ΨEl(r) = r lyEl(r), the equation for y(r) becomes
[

−
1

2M

d2

dr2
−

l + 1

Mr

d

dr
+ V (r)− E

]

yEl(r) = 0.
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The free particle equation

For a free particle V (r) = 0. Set k2 = 2ME , then

y ′′ +
2(l + 1)

r
y ′ + k2y = 0.

The solution for l = 0 is y(r) = (sin kr)/r .
The derivative of the equation is

y ′′′ +
2(l + 1)

r
y ′′ −

2(l + 1)

r2
y ′ + k2y ′ = 0.

With the definition w = y ′/r , it is easy to check that this equation
can be rewritten as

w ′′ +
2(l + 2)

r
w ′ + k2w = 0.

So, starting from the solution for l = 0, we can generate the
remainder by a recursion.

Sourendu Gupta Quantum Mechanics 1 2013: Lecture 12
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Free particle wavefunctions

As a result, one has

yk,l(r) =
2

(−k)l

(

1

r

d

dr

)l sin kr

r
,

Ψk,l(r) = 2
(−r)l

k l

(

1

r

d

dr

)l sin kr

r
.

As r → ∞, the slowest falling part of the wavefunction is when the
derivatives act on sin kr , i.e., Ψ(r) ≃ sin(kr − lπ/2)/r . One also
writes

Ψk,l(r) =

√

2πk

r
Jl+1/2(kr) = 2kjl(kr).

Clearly, these are expansion coefficients when exp(ik · r) is written
as a series in Y l

m.
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Problem 12.1: Phase shifts

A short-ranged potential is one in which the dominant
long-distance part of the equation is the centrifugal term. The
Coulomb potential is not short distance. Any potential which falls
faster than 1/r2, or goes to zero outside some range, is
short-ranged.

For such a potential V (r), the radial wavefunction must
asymptotically go to

Ψk,l(r) ≃
1

r
sin

[

kr −
lπ

2
+ δl(k)

]

,

where the phase shifts δl(k) can be obtained by matching the
wavefunction in the interior region (V 6= 0) to that in the exterior
region (V = 0).

Solve the problem of a spherical “square” well, i.e., V (r) = −V0

for 0 < r < a and zero elsewhere. Using this solution find the
phase shifts, δl(k), for this potential.
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The scaled Coulomb problem

For the Coulomb potential V (r) = ±e2/r . Multiplying the radial
equation by 2M and then again by a20, one has

[

−
d2

dρ2
+

l(l + 1)

ρ2
±

2

ρ
− λ2

]

uλ,l(ρ) = 0,

where ρ = r/a0 and λ2 = E/R .
In the classical problem, when E < 0 the motion is Keplerian, with
elliptic orbits; when E > 0 the orbits are unbounded and
hyperbolic. Quantum solutions fall into the same classes. We
expect that energies of the bounded orbits are quantized, through
impositiion of the boundary condition u(r → ∞) = 0, but
unbounded orbits will have a continuous energy spectrum.
In the limit ρ→ ∞ the potential terms can be neglected. When λ
is real (i.e., E < 0) one gets the solutions u ≃ exp(±λρ). Only the
decaying exponential is acceptable.

Sourendu Gupta Quantum Mechanics 1 2013: Lecture 12
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Coulomb bound states

We choose the negative sign for the 1/ρ term, and take λ2 = −E/R > 0,
i.e., flip the sign of the term λ2. We make the ansatz

uλ,l(ρ) = ρl+1e−λρpλ,l(ρ), pλ,l (ρ) =
∑

i=0

ciρ
i ,

where p(ρ) is bounded as ρ→ 0 and grows slower than the exponential
as ρ→ ∞. The differential equation for bound states is

[

−
d2

dρ2
+ 2

{

λ−
l + 1

ρ

}

d

dρ
−

2

ρ
{λ(l + 1)− 1}

]

pλ,l (ρ) = 0.

Substituting the series into the equation, one finds a relation between the
successive coefficients—

i [(i + 1) + 2(l + 1)]ci+1 = 2[λ(i + l + 1)− 1]ci .

For large i one finds ci+1 ≃ 2λci/(i + 1). Hence, any infinite series

solution sums up to exp(2λρ), giving u(ρ) which diverges with ρ.

Acceptable solutions are, therefore, polynomials. Clearly when λ = 1/n,

ci vanishes for i > n − l − 1. These are the Laguerre polynomials.

Normalization fixes c0. Sourendu Gupta Quantum Mechanics 1 2013: Lecture 12
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Coulomb bound state solutions

The Coulomb bound state energies and radial wavefunctions are

E (n) = −
R

n2
unl(r) =

(

r

a0

)l+1

Ln−l−1

(

r

a0

)

e−r/(na0).

States n contain 0 ≤ l < n, and hence are n2-fold degenerate.

The state with n = 1 should then be non-degenerate. However,
spectroscopic measurements found a doublet state (W. V.
Houston: 1926). This is connected to the observation that isolated
electrons come in two states (S. Goudsmit and G. E. Uhlenbeck:
1926). We now understand that pointlike particles may carry
angular momentum spin S2 = 0, 3/4 or 2. The electron has
s = ±1/2. States of the Hydrogen atom are labelled by |Elms〉,
which gives rise to such doubling. The degeneracy of levels should
then be 2n2.
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Scaling the solutions

Particles M (MeV) a0 R Size
ep 0.51 5.3 nm 13.6 eV 5.3 nm
µp 106 2.8 fm 2.5 KeV 2.5 fm
πp 121 2.2 fm 3.2 KeV 1.9 fm
Kp 323 0.8 fm 8.6 KeV 5.5 fm
e+e− 0.25 10.6 nm 6.8 eV 5.3 nm
µ+µ− 53 5.1 fm 1.4 KeV 2.5 fm
pp̄ 470 0.6 fm 12.5 KeV 0.3 fm
cc̄ 750 0.4 fm 20.0 KeV 0.2 fm
bb̄ 2500 0.1 fm 66.7 KeV 0.05 fm

Which of these systems do not have doubled energy levels? The
strength of the potential is given by the dimensionless product of
the size of the system and the binding. Try to find this for different
physical systems and check whether this is universal, or whether
non-electromagnetic interactions can be seen in two-body states.
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Problem 12.2: the Runge-Lenz vector

A = r̂ −
a0

2
(p× L− L× p)

is a vector operator, therefore [Lj ,Ak ] = iǫjklAl . Also, one can
check that

[Aj ,Ak ] = −2iMa20HǫjklLl .

Finally, this is a symmetry generator, [Aj ,H] = 0. This vector
operator can be used to ladder between states |nlm〉 for varying l .
For the bound states, it is more convenient to define

Aj =
Aj

√

−2Ma20E
, so [Lj ,Ak ] = iǫjklAl , [Aj ,Ak ] = iǫjklLl .

These are the commutation relations for the generators of the
group of rotations in 4 (Euclidean) dimensions, i.e., SO(4).

Sourendu Gupta Quantum Mechanics 1 2013: Lecture 12
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Four dimensional rotations

Define the generators of rotations in 4-dimensions through the
operators Lab = rapb − rbpa where a 6= b and both indices run
from 1 to 4. Then it is a straightforward check that the canonical
commutation relations give rise to [Lab, Lbc ] = −iLac (when
a 6= b 6= c).
Now make the identification

L =









0 L3 −L2 A1

0 L1 A2

0 A3

0









.

Then with this identification of the components Lab it is clear that
the previously computed commutators become exactly those for
the generators of SO(4).
For E > 0 the definition of A contains an extra factor of i . The
group of symmetries is then the Lorentz group SO(3,1).
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Pauli’s solution

Define J± = (L± A)/2. Then the previous commutators can be
written as [J±j , J

±

k ] = iǫjklJ
±

l and [J+j , J
−

k ] = 0. Therefore, the
bound eigenstates of the Coulomb Hamiltonian can be specified by
the eigenvalues of (J+)2 and (J−)2. One can easily check that

L · A = A · L = 0, and L2 + A2 = −
1

2Ma20E
− 1.

From these it follows that

(J+)2 = (J−)2 = j(j + 1), and 4Ma20E = −
1

n2
,

where n = 2j + 1. Clearly the degeneracy of each level is
(2j1 + 1)(2j2 + 1) = n2. Since L = J+ + J−, the allowed values of
l are those obtained by a coupling of two angular momenta of
magnitude (n − 1)/2, i.e., 0 ≤ l ≤ n − 1.
Finding simultaneous eigenvectors of H, Az and Lz correspond to
diagonalizing the Coulomb Hamiltonian in parabolic coordinates.
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Problem 12.3: Coulomb scattering states

The Coulomb problem is not short ranged, so the E > 0 states are
not phase shifted plane waves. Instead they are special functions
which are called Coulomb wave functions.

How does the full quantum treatment of Coulomb scattering states
differ from the classical phenomena?

When E > 0, the quantity λ2 > 0. Then the asymptotic solutions
of the Coulomb radial equation can be taken to be exp(±iλρ)
(either sign is allowed). Now construct the ansatz for the radial
part of the wavefunction—

uλ,l(ρ) = ρl+1e±iλρyλ,l(ρ),

and examine the solutions of the differential equation for yλ,l(ρ).
What is the form of y at large ρ? For a given λ what values of l
can one have?
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