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Spherical symmetry

© From now on we will use units with i = 1. As discussed in the
previous lecture this will mean [E] = T~1, [J] = 1 and
[e?] = LT L.

@ We shall understand the difference between operators and
eigenvalues in context. The notation with the hat over a
symbol will not be used.

© Instead we will use the notation X to mean the unit vector in
the direction of the vector x.

@ For the Coulomb problem we will use the definition of the
Bohr radius ag = 1/Me? and the Rydberg, R = Me*/2.
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Spherical symmetry

Consider two particles, at positions r; and rp, which interact
through a rotationally invariant potential, V/(r), where r = |r| and
r =r; — rp. The Hamiltonian is

2 2
P1 P2
2 V(r
2m1 2m2 ( ),

Hy, =
where operators acting on different particles commute.
We decompose the momenta into the pieces

m2p; — mMipy
P=p,+ and ===
P1 T P2 p M+ mo
Then, defining the reduced mass, M = mymy/(my + my), one can
decompose the Hamiltonian as H, = H.,, + H, where
P2 p2
em 2(m1 + m2) an 2M + (r)

Now, r and p satisfy canonical commutation relations. (check)
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Spherical symmetry

Use L =r x p, then Hem, H, L? and L, commute with each other.
(check) The states Hem |Ecm) = Ecm |Ecm), are free particle states,
since there is no potential in the coordinate conjugate to P. Also

H|Elm) = E |Elm), L2|Elm) = I(I+1) |Elm), L, |Elm) = m|Elm).

Since [H,L] = 0, we find that H{L |EIm)} = E{L; |EIm)}. As a
result, E does not depend on m, although it can depend on j.
Thus each energy level is at least (2 4 1)-fold degenerate. If there
is a higher degree of degeneracy, then there is possibly a hidden
symmetry.

Since [P, p] = [P,r] = 0, the basis of states is the direct product
|Ecm) ® |EIm). Usually one is interested in the eigenvalues E and
the relative wavefunction

(r|EIm) = ¢gim(r) = Vg (r) YL (7).



Spherical symmetry

Define the radial momentum

1, . 1 o 1
I P )]

+ u(r) _ 1du
dr rrdr

so writing Vg /(r) = uE/(r)/r, the kinetic energy term becomes

Note also that

2 1d2
r) = —

an a2 )

Clearly, one must have ug/(0) = 0 in order to have a normalizable
wavefunction Wg(r).
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Spherical symmetry

It is straightforward to show that
L? = (rxp)-(rxp)=r(p*—p}).
Hence, the one can write H = (p? + L?/r?)/(2M) + V/(r). The

differential equation satisfied by the radial part of the wave
function is then

1 d*>  I(1+1)
—mmﬁ- VP2 +V() uE/(r)—O

In this form the equation looks like a quasi-one-dimensional
equation with an effective potential which is

Ver(r) = V() + "0 L),
The extra term is positive, and infinite as r — 0. It acts like a
barrier, for I > 0, and prevents particles from probing the region
near r = 0. It is sometimes called the centrifugal barrier.
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Spherical symmetry

Since u(r) is regular as r — 0, it must vanish as some positive
power of r, i.e., u(r) — Cr?. This is just that part of the solution
which has the slowest approach to zero. Substituting this into the
radial differential equation, one finds

1 z— Z\ —
s {2z =) = 1+ 1)} 52 4 0() = 0.

The coefficient of each power of r has to be equated to zero, and
hence z(z — 1) = I(/ + 1). The only positive solution is z =/ + 1.
Hence, the regularity condition at r = 0 reduces to

ug/(r) = r'lyg(r), where yg(0) # 0.

With Wg(r) = r'yg/(r), the equation for y(r) becomes
1 & i+id

2M dr2  Mr dr

+ V(r) —E yE/(r) =0.
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Free particle

For a free particle V(r) = 0. Set k? = 2ME, then

2(1+1
y//+ (:‘ )y’+k2y:0.

The solution for | = 0is y(r) = (sin kr)/r.
The derivative of the equation is

2(/+1 2(/+1
y///+ (+ )y//_ (;'2" )y'+k2y':0.

With the definition w = y’/r, it is easy to check that this equation
can be rewritten as

2(1+2
w'” + —( i )W'+k2W=0.
r
So, starting from the solution for / = 0, we can generate the
remainder by a recursion.
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Free particle

As a result, one has

) = 2 1d )\ sinkr
Yol (=K \rdr r’

—r)Y /1d\ sinkr
viatr) = 257 (75) e

As r — o0, the slowest falling part of the wavefunction is when the
derivatives act on sin kr, i.e., W(r) ~ sin(kr — Iw/2)/r. One also

writes
[27k .
\Ilk,,(r) = TJ,+1/2(/(I’) = 2kj/(kr).

Clearly, these are expansion coefficients when exp(ik - r) is written
as a series in Y.
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Free particle

A short-ranged potential is one in which the dominant
long-distance part of the equation is the centrifugal term. The
Coulomb potential is not short distance. Any potential which falls
faster than 1/r2, or goes to zero outside some range, is
short-ranged.

For such a potential V/(r), the radial wavefunction must
asymptotically go to

Wy (r) ~ %sin [kr - %T + 5/(k)} ,

where the phase shifts d;(k) can be obtained by matching the
wavefunction in the interior region (V # 0) to that in the exterior
region (V = 0).

Solve the problem of a spherical “square” well, i.e., V(r) = -V
for 0 < r < a and zero elsewhere. Using this solution find the
phase shifts, §,(k), for this potential.
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Coulomb problem

For the Coulomb potential V/(r) = +e?/r. Multiplying the radial
equation by 2M and then again by 3(2), one has

> I(I+1) 2
- +Z -\ =0
dp2 p2 p U)\y/(p) 9

where p = r/ag and A\?> = E/R.

In the classical problem, when E < 0 the motion is Keplerian, with
elliptic orbits; when E > 0 the orbits are unbounded and
hyperbolic. Quantum solutions fall into the same classes. We
expect that energies of the bounded orbits are quantized, through
impositiion of the boundary condition u(r — oo) = 0, but
unbounded orbits will have a continuous energy spectrum.

In the limit p — oo the potential terms can be neglected. When A
is real (i.e., E < 0) one gets the solutions u ~ exp(+Ap). Only the
decaying exponential is acceptable.

Sourendu Gupta Quantum Mechanics 1 2013: Lecture 12



Coulomb problem

We choose the negative sign for the 1/p term, and take \> = —E/R > 0,
i.e., flip the sign of the term \2. We make the ansatz

uni(p) = e pri(p),  pailp) = Zc,p,

where p(p) is bounded as p — 0 and grows slower than the exponential
as p — oo. The differential equation for bound states is

d? I+1) d 2
28 A ——Fr — ——{A(/+1)-1 =0.
R e PR R ER Y
Substituting the series into the equation, one finds a relation between the
successive coefficients—

i+ 1)+ 2(/ + D]cip1 = 2[A(i + 1 + 1) — 1]c;.
For large i one finds ¢iy1 ~ 2A¢;/(i +1). Hence, any infinite series
solution sums up to exp(2\p), giving u(p) which diverges with p.
Acceptable solutions are, therefore, polynomials. Clearly when A =1/n,
¢; vanishes for i > n— [ — 1. These are the Laguerre polynomials.
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Coulomb problem

The Coulomb bound state energies and radial wavefunctions are

I+1
E(n) = _n_R2 Un/(f) = (L) [n—1-1 (L) e—r/(nao)_

a0 a0
States n contain 0 < / < n, and hence are n?-fold degenerate.

The state with n = 1 should then be non-degenerate. However,
spectroscopic measurements found a doublet state (W. V.
Houston: 1926). This is connected to the observation that isolated
electrons come in two states (S. Goudsmit and G. E. Uhlenbeck:
1926). We now understand that pointlike particles may carry
angular momentum spin 52 =0, 3/4 or 2. The electron has

s = £1/2. States of the Hydrogen atom are labelled by |Elms),
which gives rise to such doubling. The degeneracy of levels should
then be 2n?.
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Coulomb problem

Particles M (MeV) ag R Size

ep 0.51 53nm 13.6 eV 53 nm
J7s) 106 2.8 fm 25 KeV 25 fm

P 121 2.2 fm 32KeV 1.9fm

Kp 323 0.8 fm 8.6 KeV 55 fm

ete 0.25 10.6 nm 6.8 eV 5.3 nm
ppT 53 51fm 1.4 KeV 25fm

pD 470 0.6 fm 12.5 KeV 0.3 fm

cc 750 0.4 fm 20.0 KeV 0.2 fm

bb 2500 0.1fm  66.7 KeV 0.05 fm

Which of these systems do not have doubled energy levels? The
strength of the potential is given by the dimensionless product of
the size of the system and the binding. Try to find this for different
physical systems and check whether this is universal, or whether
non-electromagnetic interactions can be seen in two-body states.
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Coulomb problem

A:?—%(pr—pr)

is a vector operator, therefore [L;, Ax] = i€jAj. Also, one can
check that
[.Aj,.Ak] = —2iMa(2)H6jk/L/.

Finally, this is a symmetry generator, [A;, H] = 0. This vector
operator can be used to ladder between states |n/m) for varying /.
For the bound states, it is more convenient to define

A.
,/—2/(/1‘935’

These are the commutation relations for the generators of the
group of rotations in 4 (Euclidean) dimensions, i.e., SO(4).

Aj = SO [Lj,Ak] = iejk/A/, [Aj,Ak] = iejk/L/.
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Coulomb problem

Define the generators of rotations in 4-dimensions through the
operators L, = rapp, — rpps Where a # b and both indices run
from 1 to 4. Then it is a straightforward check that the canonical

commutation relations give rise to [Lap, Lpc] = —iLac (when
a#b+#c).
Now make the identification
0 L3 —L, A
[— 0 L1 A
0 As
0

Then with this identification of the components L, it is clear that
the previously computed commutators become exactly those for
the generators of SO(4).

For E > 0 the definition of A contains an extra factor of /. The
group of symmetries is then the Lorentz group SO(3,1).
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Coulomb problem

Define J= = (L + A)/2. Then the previous commutators can be
written as [J*, S| = igiJ;” and [J, J ] = 0. Therefore, the
bound eigenstates of the Coulomb Hamiltonian can be specified by

the eigenvalues of (J*)2 and (J7)2. One can easily check that

1

L-A=A-L=0 d  LPH+A=—m-—1
. * 2MaZE

From these it follows that
1

P =UP=jG+1), and  AMBE=——,
where n = 2j + 1. Clearly the degeneracy of each level is
(2j1 +1)(2j2 + 1) = n?. Since L = J* + J, the allowed values of
| are those obtained by a coupling of two angular momenta of
magnitude (n —1)/2, iie, 0 </ <n—1.
Finding simultaneous eigenvectors of H, A, and L, correspond to
diagonalizing the Coulomb Hamiltonian in parabolic coordinates.

Sourendu Gupta Quantum Mechanics 1 2013: Lecture 12



Coulomb problem

The Coulomb problem is not short ranged, so the E > 0 states are
not phase shifted plane waves. Instead they are special functions
which are called Coulomb wave functions.

How does the full quantum treatment of Coulomb scattering states
differ from the classical phenomena?

When E > 0, the quantity A2 > 0. Then the asymptotic solutions
of the Coulomb radial equation can be taken to be exp(+i\p)
(either sign is allowed). Now construct the ansatz for the radial
part of the wavefunction—

I—|—le:|:l)\p

uxi(p) =p yi(p),

and examine the solutions of the differential equation for yy ;(p).
What is the form of y at large p? For a given A what values of /
can one have?
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