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Commuting measurements

The dynamics of a quantum system involves some Hermitean
operators, Oi , which generally do not all commute. We take the
maximum commuting set, C, and label states by eigenvalues, λα, of
Oα ∈ C. Such states are a basis in the Hilbert space of the system.
We will assume, for the moment, that the Hamiltonian, H ∈ C.

Given a state, Abed can make measurements of the Oα ∈ C one by
one. After each measurement, he knows that the state has an
eigenvalue λα. So, after all the measurements are done, he knows
that the state is |λ1, λ2, · · ·〉. This is usually called preparing a
state. By our assumption, this is a stationary state.

Now Bela makes many measurements of any number of these
Oα ∈ C in any order. Since they all commute, her measurements
will give the same values λα’s over and over again.
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Non-commuting measurements

Now Abed makes a measurement of one of the Oi 6∈ C on the
state. The result will be one of the eigenvalues of Oi . However, the
corresponding eigenstate is not one of the basis states above. As a
result, the new state is some superposition of these basis states.

Clearly, if Bela now makes a measurement of one of the Oα ∈ C
she does not necessarily get the old value. This happens because
the measurements do not commute,

OiOα |λ1, λ2, · · ·〉 6= OαOi |λ1, λ2, · · ·〉 .

This will happen whether Abed and Bela observe a single-particle
quantum state or a multi-particle quantum state. This logic
applied to a single atom with its many electrons and nucleons (or
quarks) seems quite reasonable. But it begins to seem a little odd
when they apply it to a quantum state which is not localized.
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Two-particle states

We will construct generic two-particle states. We will assume that
they have equal mass, spin, and that there are no forces acting on
them. Let r1 and p1 be the position and momentum of the first
particle, and r2 and p2 of the second. Basis states of the two
particle system could be |r1〉 ⊗ |r2〉. But it will be useful to
construct states labelled by the CM momentum, P = p1 + p2 and
r = r1 − p2. There is a unitary transformation to the basis |P, r〉.

Elsewhere it will be useful to discuss the spin states. Since the
particles have equal spin, s, we can drop this label from the states,
and use only the projection in the z-direction: m1 and m2. The
basis states are |m1〉 ⊗ |m2〉. We can also couple the spins into a
total spin S state, with z-projection of M. There is an unitary
transformation into the basis |S ,M〉.
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The Einstein-Podolsky-Rosen construction

Abed and Bela set up the two-particle system |0, r0〉, where initially
P = 0. Now Abed makes a very accurate measurement of the
momentum of particle 1 and finds it to be p1. Clearly, p2 = −p1.
The positions of the two particles have large uncertainties, but
r = r0 + 2tp1/m.

When the particles have travelled very far from each other, Bela
makes a very accurate measurement of the position of the particle
2 and finds it to be r2. Now do we know all of p1, p2, r1 and r2
with arbitrary accuracy?

We know that we do not. As soon as Bela measures r2, the
momentum p2 becomes completely uncertain, so instantaneously
making p1 also very uncertain. This happens no matter how large
r is.

This “action at a distance” is called quantum entanglement.
Sourendu Gupta Quantum Mechanics 1 2013: Lecture 15



Outline Entanglement Bell’s inequalities Keywords and References

Bohm’s version of the EPR construction

Suppose we choose to work with spins, and build an initial state
with S = 0 where each s = 1/2. Then

|00〉 = 1√
2

(

|1/2〉 ⊗ |−1/2〉 − |−1/2〉 ⊗ |1/2〉
)

.

Abed and Bela make this state. Then Abed measures m1. If this is
1/2 then he deduces that m2 = −1/2.

Bela makes a measurement of sx , on particle 2, and finds it to be
1/2. Since the initial state was |00〉, she deduces immediately that
Abed’s particle should yield −1/2 if he were to measure sx . Now
does Abed know both the eigenvalues of sz and sx for particle 1?

No. Instead as soon as Bela makes her measurement, the state of
the entangled pair changes. Now if Abed measures sz again on the
particle, there is a 50% chance that he will not get the same value
as before.
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Hidden variables

Charu believes that there must be a dynamical variable µ, hidden
to Abed and Bela, which completely describes the spins of the
particles. She sets up a function S(r̂, µ) = ±1 which gives the sign
of the projection of the spin in the direction r̂. Since the total spin
is zero, the conservation of angular moment forces S to give
opposite values for the spins of particles 1 and 2.
In Charu’s mechanics, the variable µ may take any value, but once
the initial state is set up, its value is fixed. There is a probability
distribution p(µ) from which the value of µ is drawn, with
∫

dµp(µ) = 1. Abed can measure the spin projection in direction

â, and Bela in direction b̂. By repeated measurements they can set
up a correlation funtion

〈

(s1 · â)(s2 · b̂)
〉

= −
〈

(s1 · â)(s1 · b̂)
〉

= −1

4

∫

dµp(µ)S(â, µ)S(b̂, µ).
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Quantum correlation function

In quantum mechanics, one must use the operator σ/2 for the
spin. As a result, one can write the operator
〈

(s1 · â)(s2 · b̂)
〉

= −
〈

(s1 · â)(s1 · b̂)
〉

= −1

4
â · b̂+ i

2
(â× b̂) · 〈s1〉,

where we have used the fact that s2 = −s1. The expectation value
of s1 is zero, so in QM,

〈

(s1 · â)(s2 · b̂)
〉

= −1

4
â · b̂.

Problem 15.1: Hidden variable theory

It is possible to choose S(â, µ) and p(µ) in such a way that the
results of quantum mechanics is obtained. Find such functions S
and p.

Charu wonders whether any experiment can distinguish between
quantum mechanics and hidden variable theories.
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Bell’s inequality

〈

(s1 · â)(s2 · b̂)
〉

−
〈

(s1 · b̂)(s2 · ĉ)
〉

=

1

4

∫

dµp(µ)S(b̂, µ) [S(ĉ, µ)− S(â, µ)]

1

4

∫

dµp(µ)S(b̂, µ)S(ĉ, µ) [1− S(â, µ)S(ĉ, µ)] .

Where we used the fact S2(ĉ, µ) = 1. Taking the absolute value

∣

∣

∣

〈

(s1 · â)(s2 · b̂)
〉

−
〈

(s1 · b̂)(s2 · ĉ)
〉∣

∣

∣
≤ 1

4

∫

dµp(µ) [1− S(â, µ)S(ĉ, µ)]

So hidden variable theories obey Bell’s inequality

∣

∣

∣

〈

(s1 · â)(s2 · b̂)
〉

−
〈

(s1 · b̂)(s2 · ĉ)
〉∣

∣

∣
≤ 1

4
+ 〈(s1 · â)(s2 · ĉ)〉 .
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· · · in quantum mechanics

Now Abel and Bela can choose â · b̂ = 0, so that the corresponding
correlation vanishes. Next, on choosing ĉ = cos θâ+ sin θb̂, they
have

〈

(s1 · b̂)(s2 · ĉ)
〉

= −1

4
sin θ, 〈(s1 · â)(s2 · ĉ)〉 = −1

4
cos θ.

As a result, one finds
∣

∣

∣

〈

(s1 · â)(s2 · b̂)
〉

−
〈

(s1 · b̂)(s2 · ĉ)
〉∣

∣

∣
=

1

4
| sin θ|,

1

4
+ 〈(s1 · â)(s2 · ĉ)〉 =

1

4
(1− cos θ) .

Bell’s inequality requires the difference

B(θ) = 1

4
[| sin θ|+ cos θ − 1]

to be negative. However, it turns out that for 0 < |θ| < π/2 this
function is positive.
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Experiments

Bell’s analysis was published in 1964. It was the first example of a
correlation function which made it possible to distinguish
exerimentally between hidden variable theories and quantum
mechanics.

Further inequalities can be developed with correlations of four
different measurements. Such an experiment was performed in
1982 by Alain Aspect and collaborators. The results support
quantum mechanics.

More subtle correlations have also been measured since then. All
measurements until now support quantum mechanics.
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