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Post-colonial quantum mechanics

〈xi , ti |xf , tf 〉 =
∑

xm

〈xi , ti |xm, tm〉 〈xm, tm|xf , tf 〉

time

sp
ac

e

Sum over all paths: path integral
Dirac (1933), Feynman (1948)
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The unitary operator

When the Hamiltonian of a quantum system is H, then time
evolution of any quantum state in the Hilbert space on which H

acts is

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 , U(t, t0) = exp[−iH(t − t0)].

We have assumed, as everywhere in this course, that H is
time-independent.
The evolution operator U is unitary, since H is Hermitean. Also,
the evolution operators form a group, since

U(t, t) = 1, U(t, t ′′) = U(t, t ′)U(t ′, t ′′), U(t, t ′)−1 = U(t ′, t),

and multiplication of operators is associative. The generator of
infinitesimal time evolution is H. Clearly U is block diagonal in the
eigenbasis of H.
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Slicing the time interval

Using the group property, we can write

U(tf , ti ) =
N−1
∏

i=0

U(ti + δt, ti), where δt = (tf − ti )/N.

If the state at time tm is |ψm〉, then

〈ψ(ti )|U(tf , ti ) |ψ(ti )〉 =
∑

{ψm}

N−1
∏

m=0

〈ψm|U(tm + δt, tm) |ψm〉 ,

where |ψ(tf )〉 = |ψN+1〉 and |ψ(ti )〉 = |ψ0〉. The sum over all
intermediate states is called a path integral.
If the states |ψm〉 are eigenstates of the Hamiltonian then the
matrix elements on the right are pure phases. However, if we do
not know the eigenstates of the Hamiltonian, then the path
integral is non-trivial.
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A two-state path integral

For a two-state system take the Hamiltonian to be H =
∑

i hiσi
with all four hi real. Then the infinitesimal evolution operator is

U(δt) = 1−iHδt+O(δt2) =

(

1− iδt(h0 + h3) −iδt(h1 + ih2)
−iδt(h1 − ih2) 1− iδt(h0 − h3)

)

.

Each of these elements is a phase factor associated with the path
taken during the interval δt. A path contributing to the transition
matrix element 〈α0|U(tN , t0) |αN〉 is the sequence of intermediate
states |α(ti )〉. The contribution of each path to the transition
matrix element is

UαN ,α0 =
∑

αN−1,··· ,α1

UαNαN−1
UαN−1αN−2

· · ·Uα2α1Uα1α0 .

The sum over paths is a sum over intermediate states. This is
exactly the same as doing the matrix multiplication needed to get
the transition amplitude.
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A different take on a two-state path integral

Another way of doing the two-state path integral is to introduce
the unitary matrix V which diagonalizes the Hamiltonian, i.e.,
V †HV is diagonal. Then

U(δt) = V †

(

e−iE0δt 0
0 e−iE1δt

)

V .

The sum over intermediate states is then diagonal, and the V s act
only on the initial and final states to give

〈αN |U(tN , t0) |α0〉 = (α0
N)

∗α0
0e

−iE0T + (α1
N)

∗α1
0e

−iE1T ,

where T = tN − t0; therefore the path integral can be used to get
the energy levels of the system. This is best done in Euclidean
time, i.e.changing t → it. Then the above expression becomes

〈αN |U(tN , t0) |α0〉 → (α0
N)

∗α0
0e

−E0T ,

when E1 > E0 and T (E1 − E0) ≫ 1. This gives the lowest
eigenvalue of H. The Euclidean U is the transfer matrix.
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Using the path integral to compute energies

1 Choose δt and N (T = Nδt). Fix |α0〉 and |αN〉.
2 Choose a random path in Hilbert space, i.e., a random

sequence of N quantum states |αi 〉 for 1 ≤ i < N.
3 Compute the product of Euclidean factors δαi ,αi+1 − δtHαi ,αi+1

along the path. Call this A.
4 Repeat the above two steps many times and find 〈A〉.
5 Increase N and repeat the above three steps until the

exponential behaviour manifests itself.
6 The exponential slope gives the lowest energy eigenvalue, E0.

This method is not the most efficient technique in quantum
mechanics on finite dimensional Hilbert spaces (matrix
multiplication is cheaper). However, for infinite dimensional Hilbert
spaces, and in quantum field theory, often this is the best possible
method. This is the foundational technique of quantum field
theory.
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Problem 16.1: Feynman diagrams

Take the Hamiltonian H = H0 + λH1, and assume that the
eigenvalues and eigenvectors of H0 are non-degenerate and known.
Now examine the evolution operator U(t) = exp(−iHt) in the
eigenbasis of H0.

For infinitesimal t, examine the relation between the unitary
evolution operator and the perturbation of the wavefunction.
Develop a diagrammatic expression in terms of the eigenstates of
H0 and this perturbation.

String together these infinitesimal operators to construct the
evolution operator through an arbitrary time interval. Consider
these matrix multiplications in terms of the diagrams you have
developed.
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Using position eigenstates

Choose to work with the position basis states |xi 〉. Then the sum
over intermediate states becomes integrals over the positions—-

〈x(tfin)|U(tfin, tin) |x(tin)〉 =
∫

{

N−1
∏

i=1

dxi 〈xi+1| e−iTδt |xi 〉 e−iV (x)δt

}

.

We have used the decomposition, H = T + V . One way to
evaluate the matrix element involving the kinetic energy is to insert
complete sets of eigenvectors of momentum. Then

〈x |′ e−iTδt |x〉 =
∫

dpe
− iδt

2m

(

p2−2mp x−x′

δt

)

∝ exp

[

imδt

2

(

δx

δt

)2
]

.

The Gaussian integral can be performed after completing squares
and shifting. The only dependence on x and x ′ is in the factor
shown.
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Expression in terms of the action

Putting all this together, the transition matrix element becomes
∫

{

N−1
∏

i=1

dxi

}

N−1
∏

i=0

exp

[

iδt

{

m

2

(

dxi

dt

)2

− V (xi )

}]

.

The expression within braces is the Lagrangian of the system. The
product of exponentials is just the Riemann integral when the time
step is taken to zero,

N−1
∏

i=0

exp [iδtL(xi )] −→ exp

{

i

∫

dtL[x(t)]

}

= eiS[x],

where the action is defined to be S [x ] =
∫

dtL[x(t)]. Feynman’s
path integral is then

Z = 〈x(ti )|U(tf , ti ) |x(ti )〉 =
∫

DxeiS[x],

where the paths join the given points x(ti ) and x(tf ).
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Classical from quantum

... if we move the path ... by a small amount δx , small on the classical

scale, the change in S is likewise small on the classical scale, but not
when measured in the tiny unit ~. These small changes in path will,
generally, make enormous changes in phase, and our cosine or sine will
oscillate exceedingly rapidly between plus and minus values. The total
contribution will then add to zero; for if one makes a positive
contribution, another infinitesimally close (on a classical scale) makes an
equal negative contribution, so that no net contribution arises.
... But for the special path x , for which S is an extremum, a small
change in path produces, in the first order at least, no change in S . All
the contributions from the paths in this region are nearly in phase, at
phase Scl , and do not cancel out. Therefore, only for paths in the vicinity
of x can be get important contributions, and in the classical limit we
need only consider this particular trajectory as being of importance.

(from “Quantum mechanics and Path Integrals”, (1965) by R. P.

Feynman and A. R. Hibbs, p 30)
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Problem 16.2: Evaluating a path integral

1 Evaluate the Gaussian integral over momenta carefully and
find the normalization of Feynman’s path integral.

2 For a free particle show that the action Scl corresponding to
the classical motion is Scl = m(xfin − xin)

2/2(tfin − tin).

3 For a harmonic oscillator with T = tfin − tin show that

Scl =
mω

2 sinωT

[

(x2in + x2fin) cosωT − 2xinxfin
]

.

4 Find Scl for a particle moving under a constant force F .

5 Formulate the problem of many particles in the path integral
language.

6 How would you find the lowest energy bound state in a
potential using a Monte Carlo computation of the path
integral in Euclidean time?
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Time slicing

The path integral for the free particle is

Z =

∫

Dx exp

[

i
m

2

∫ tfin

tin

dt

(

dx

dt

)2
]

Again divide the time interval into pieces of length δt and use the
coordinates xi at ti = t0 + iδt to write the derivative as a finite difference.
The resulting integral is quadratic in the xi , and hence the problem
reduces to a set of Gaussian integrals. One can perform each integral
separately using Gauss’ formula

∫

∞

−∞

dxe−x2/(2a2) =
√

(2π)a.

Does this integral converge for all complex a?
The multivariate version of Gauss’ formula can be written down most
compactly in the form

∫

∏

dxNi=1 exp

[

−1

2
xTAx

]

= (2π)N/2 (DetA)−1/2.

Sourendu Gupta Quantum Mechanics 1 2013: Lecture 16



Outline Time evolution Path integral Oscillator Keywords and References

Expansion in quantum fluctuations

The classical path is

d2xc

dt2
= 0, giving xc(t) = xin +

xfin − xin

tfin − tin
(t − tin).

Decompose an arbitrary path in the form x(t) = xc(t) + q(t),
where q(tin) = q(tfin) = 0. The quantity q(t) corresponds to
quantum fluctuations of the path around its classical value.
Since the classical path is an extremum of the action, one can
show that

S = Scl +
m

2

∫ tfin

tin

dt

(

dq

dt

)2

.

As a result, the partition function factors into the form Z = ZcZq.
Since Zq again contains only quadratic integrals, one can use the
Gaussian integration formula all over again. Note that the
quadratic form is diagonalized through Fourier transformation.
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The result

For a free particle, the partition function is

Z =

√

m

2πi(tfin − tin)
exp

[

im

2

(xfin − xin)
2

tfin − tin

]

.

The exponential comes from factor Zc and the square root in the
prefactor is the result of performing the integral over the quantum
fluctuations.
The Euclidean continuation describes a random walk. When a
random walker is released from xin at time tin and its position, xfin
is measured at time tfin, the probability distribution of xfin is given
by

√

D

2π(tfin − tin)
exp

[

−D

2

(xfin − xin)
2

tfin − tin

]

.

The mean distance travelled by the random walker grows as√
tfin − tin. This correspondence reflects the fact that the

Schrödinger’s equation in imaginary time is the diffusion equation.
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Time slicing

The path integral for the free particle is Z = ZcZq, where

Zq =

∫

Dq exp

[

i
m

2

∫ tfin

tin

dt

(

dq

dt

)2
]

,

and q(tin) = q(tfin) = 0. The quantum part of the action (above)
can be simplified through integration by parts—

∫ tfin

tin

dt

(

dq

dt

)2

= q
dq

dt

∣

∣

∣

∣

tfin

tin

−
∫ tfin

tin

dtq

(

d2

dt2

)

q.

This is quadratic in q and hence can be integrated. The integral
involves the determinant of the second derivative operator.
This determinant can be computed either by Fourier transformation
or by discretization. We introduce the discretized derivatives—

∆qi =
1

δt
(qi+1 − qi ) and ∇qi =

1

δt
(qi − qi−1).
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The algebra of discretized derivatives

The commutator [∆,∇] = 0 since

∆∇qi =
1

(δt)2
(qi+1 − 2qi + qi−1) = ∇∆qi .

One also has a formula for summation by parts—

N
∑

i=1

xi∇yi =
1

δt
(xNyN − x0y0)−

N−1
∑

i=0

(∆xi )yi .

This can be proven by explicitly writing out the differences and
sums. When xN = x0 = 0 (or yN = y0 = 0), this can be rewritten
in the form

N
∑

i=1

xi∇yi = −
N−1
∑

i=0

(∆xi )yi = −
N
∑

i=1

(∆xi )yi .
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Matrices for discretized derivatives

The matrix form of the derivatives are

∆ =
1

δt













· · · ...
...

... · · ·
· · · −1 1 0 · · ·
· · · 0 −1 1 · · ·
· · · ...

...
... · · ·













= ∇†,

although, in the limit δt → 0, both go to the continuum derivative.
Also

∆∇ =
1

(δt)2

















· · · ...
...

... · · ·
· · · −2 1 0 · · ·
· · · 1 −2 1 · · ·
· · · 0 1 −2 · · ·
· · · ...

...
... · · ·

















= ∇∆.

We have to find the determinant of this matrix.
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A recursion for the determinant

When N = 1 we find −(δt)2∆∇|N=1 = 2 and the determinant is
2. When N = 2, we have

−(δt)2∆∇|N=2 =

(

2 −1
−1 2

)

,

so the determinant is 3. A recursion relation is obtained by
expanding the determinant by the first row—

Det [−(δt)2∆∇|N ] = 2Det [−(δt)2∆∇|N−1]−Det [−(δt)2∆∇|N−2].

The initial conditions above can be used to solve this recursion to
get

Det [−(δt)2∆∇|N ] = N + 1.

Using this determinant, we can perform the integral

ZN
q =

( m

2πiδt

)N/2
∫

{

N−1
∏

i=1

dqi

}

eiSq .
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The integral to be performed

By considering fluctuations around the classical path one finds, as
before, Z = ZcZq. For Zc one uses the previously evaluated value
of Scl for the harmonic oscillator. The integral over quantum
fluctuations is written down in a way very similar to that for the
free particle. Finally, for this problem we find

ZHO
q = ZFP

q

√

Det {−(δt)2∆∇}
Det {−(δt)2[∆∇+ ω2]} ,

where HO means harmonic oscillator and FP stands for free
particle. This gives the result

ZHO
q =

√

m

2πi(tfin − tin)

√

ω(tfin − tin)

sinω(tfin − tin)
.
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Diagonalizing the discretized derivatives

Going to the discrete Fourier basis for qi (since q0 = qN = 0),

qi =
∑

n

e−iωntiq(ωn), ωn =
πn

Nδt
.

we find that

∆qi =
∑

n

1

δt
(e−iωnδt − 1)e−iωntiq(ωn).

Therefore, in the Fourier basis ∆ is diagonal, and in the limit
δt → 0 it goes over to −iω. ∇ is also diagonal in the same basis,
and its eigenvalues are complex conjugate to this. As a result

∆∇q(ωn) =
2

(δt)2
(1− cosωnδt).

This representation gives us another way of handling the
determinants needed to evaluate the path integrals over the
quantum fluctuations.
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What have we gained?

Quadratic actions give Gaussian integrals and can be solved. Anything
else is unsolvable. What have we gained?

1 The power of this method can be seen when solving interacting
multi-particle problems. Since the number of coordinates to be
handled is very large, reducing the problem to differential equations
is highly unsatisfactory. The equations can hardly ever be made
tractable. Path integrals give us new techniques.

2 Quantum statistical mechanics and quantum mechanics can be
handled in exactly the same way. Path integrals connect quantum
mechanics with the theory of probability.

3 If the non-quadratic parts of the action are “small” then we can set
up approximation methods. One such method is perturbation
theory. Perturbation theory in many-particle physics and quantum
field theory is most easily set up using path integrals.

4 We have reduced the general problem to doing integrals. We have
efficient numerical methods for evaluating integrals. So we have a
method even when perturbation fails (which is almost always).
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