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Quantum states are vectors

We saw that the state of a quantum particle is specified by a wave
function ψ(x, t). We saw that the probability of finding a particle
at position x at time t is proportional to |ψ(x, t)|2.

Since the probability that the particle is somewhere is unity, one
has ∫

dDx |ψ(x, t)|2 = 1.

So the wave function lies in the space of square integrable
functions. This is a vector space.

We may try to generalize this and say that the state of a quantum
particle, i.e., a quantum state is given by a vector in some space.
We will try to find whether this is a meaningful statement.

Sourendu Gupta Quantum Mechanics 1 2013: Lecture 3



Outline Setting up Exploring Keywords and References

Dirac Bra and Ket notation

An inner product of a vector, v, with itself is usually denoted by
v · v. When the vector is represented by a column of components,
then this notation actually means vTv, where vT is the transpose,
i.e., a row of components. Then, using the usual rules of matrix
multiplication, v · v = v21 + v22 + · · ·+ v23 .

For a vector with complex components, v · v ≡ v†v, where the
Hermitean conjugate, v† is the row vector with each component
being the complex conjugate of the column vector’s component.

Dirac introduced the notation |v〉 (called ket) for the column
vector v and the notation 〈v | (called bra) for the Hermitean
conjugate v†. An inner product 〈w |v〉 is called a bracket, and is a
complex number (c-number).
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Transformations of bases

Using the operations that are allowed in a vector space, we can
form operators on vector spaces, i.e., operations which take any
basis {x̂1, x̂2, · · · , x̂D} and creates a new set of vectors

ŷ1 = a11x̂1 + a12x̂2 + · · ·+ a1D x̂D ,

ŷ2 = a21x̂1 + a22x̂2 + · · ·+ a2D x̂D , · · ·

ŷD = aD1x̂1 + aD2x̂2 + · · ·+ aDD x̂D .

The scalar coefficients in this linear transformation can be
collected together into the matrix

A =




a11 a12 · · · a1D
a21 a22 · · · a2D
...

... · · ·
...

aD1 aD2 · · · aDD


 .
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Linear transformations

If the new set {ŷi} is to be a basis, then the vectors must be
linearly independent. This implies that detA 6= 0. (Prove
this).

We have defined addition of vectors and multiplication by
scalars as the only way to generate new vectors out of those
at hand. So, linear transformations are the only possible
operations.

We can also think of linear operations as linear
transformations of the components of a vector through the
equation ṽ = Av.

Any linear operator that takes an orthonormal basis into
another orthonormal basis is an orthogonal transformation.
(Prove this)
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Measurements are Hermitean operators

The result of a measurement on a quantum state |v〉 is a scalar.

One scalar is 〈v |v〉; has only a single value, therefore not a
general measurement.

A measurement on |v〉 cannot generally involve another
quantum state, |w〉. Hence, inner products such as 〈w |v〉
cannot generally describe a measurement.

We could try to associte a measurement with a linear
operator, i.e., a matrix A. The result of the measurement can
be 〈v |A |v〉.

Measurements (q, p, H, L, etc.) must yield real numbers. If
A is a measurement, then 〈v |A |v〉∗ = 〈v |A |v〉. But by
definition 〈v |A |v〉∗ = 〈v |A† |v〉. Hence A† = A for a
measurement. Such operators are called Hermitean operators.
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Quantum states are not exactly vectors

Since we work with only normalized quantum states, |v〉, it is clear
that |w〉 = α |v〉 is the same state, where α is any complex
number. No matter what the value of α, after normalization, |w〉
reduces to |v〉.

Furthermore, since 〈w | = α∗ 〈v |, it turns out that
〈w |A |w〉 = |α|2 〈v |A |v〉. Normalization removes this factor of
|α|2. As a result, all physical measurements in the two states give
the same result.

As a result, every vector does not specify an unique quantum
state. Instead, a quantum state is a ray in a complex vector space.
The same thing is meant if we say that a quantum state is a
projective vector.
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A projective space

Consider a one-dimensional real vector space: the real line. There
are an infinite number of vectors, one for every point on the real
line. In the projective version of this, every non-zero vector |v〉 is
equivalent to the point unity. So the only two projective vectors
are |0〉 and |1〉.

Problem 3.1

Consider the two-dimensional real vector space: a plane. We can
construct from this the space of two-dimensional real projective
vectors. Construct and describe this space.

Problem 3.2

Similarly, construct and describe the space of one-dimensional
complex vectors.
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Eigenbases of Hermitean operators

Diagonal elements of Hermitean operators are real.

Eigenvalues of Hermitean operators are real. If |λ〉 is a
(normalized) eigenvector of A with eigenvalue λ, then
〈λ|A |λ〉 = λ. Since λ∗ = 〈λ|A |λ〉∗ = 〈λ|A† |λ〉 = λ, λ is
real.

Eigenvectors of Hermitean operators are orthogonal to each
other. Let |λ〉 and |µ〉 be two distinct eigenvectors of a
Hermitean operator A with eigenvalues λ and µ respectively.
Now 〈µ|A |λ〉 = λ〈µ|λ〉 where A acts to the right. Also,
〈λ|A |µ〉 = µ〈λ|µ〉. But 〈λ|A |µ〉∗ = 〈µ|A† |λ〉 = 〈µ|A |λ〉.
Hence, if µ 6= λ, one has 〈µ|λ〉 = 0.

When the two eigenvalues are equal, the eigenvectors need
not be orthogonal. However, one can always construct two
linear combinations which are orthogonal to each other (by
the Gram-Schmidt process).
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Diagonalizing a matrix

Collect the eigenvectors of A into a matrix U every column of
which is one of the eigenvectors. Then U†U = 1, since the
eigenvectors are orthonormal. Since, U†AU is diagonal,
unitary matrices diagonalize Hermitean matrices.
The eigenvectors, |i〉, of A with eigenvalues λi (with
1 ≤ i ≤ D) form a basis. A measurement of A in the state |i〉
will only give the value λi .
Any state can be written in the form

|ψ〉 =

D∑

i=1

ψi |i〉 , where

D∑

i=1

|ψi |
2 = 1.

Each measurement of A on |ψ〉 could give a different value;
but with average

〈ψ|A |ψ〉 =
D∑

i=1

|ψi |
2λi .
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Commuting operators

Two operators A and B commute if AB = BA.

The commutator of A and B is [A,B] = AB − BA. [A,B] = 0
when the operators commute.

If two operators commute, then they have the same
eigenstates (i.e., they are simultaneously diagonalizable). Let
|i〉 be the eigenstates of A with eigenvalues λi . The matrix
elements of A are Aij = 〈i |A|j〉 and those of B are Bij . Also,
Aij = λiδij . Since the operators commute, one has

0 =
∑

k

(AikBkj − BikAkj) = (λi − λj)Bij .

When i 6= j , the equality demands that Bij = 0. Hence B is
diagonal in the same basis as A. (There is a small gap in the
proof; fix it.)
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Problem 3.3

Consider the matrix

M =
1

2



0 1 1
1 0 1
1 1 0


 .

1 Is this matrix Hermitean?

2 What are the eigenvalues and eigenvectors of this matrix?

3 Are there linear combinations of eigenvectors which are also
eigenvectors?

4 Is the unitary transformation that diagonalizes M unique?
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Problem 3.4

Consider the matrices

A =



0 1 0
1 0 0
0 0 1


 , and B =

1

3




1 −2 −2
−2 1 −2
−2 −2 1


 .

1 Are these matrices simultaneously diagonalizable?

2 What are the eigenvalues and eigenvectors of A?

3 Use the eigenvectors of A to construct an unitary
transformation, U. Find U†BU.

4 Construct a one-parameter (θ) set of unitary matrices V (θ)
such that V (θ)†U†AUV (θ) are diagonal for all θ. Find what
happens to V (θ)†U†BUV (θ) as a function of θ.

5 Is there an unique set of common eigenvectors of A and B?
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Complete set of commuting operators

If a set of (Hermitean) operators {A1,A2, · · · ,AN} all
commute with each other, and no other operator can be
found in the vector space which commute with this set, then
this is called a complete set of commuting operators.

There may be distinct complete sets of commuting operators
in the same vector space.

Given a complete set of commuting operators, there is an
unique unitary transformation which diagonalizes all of them
simultaneously. (If the set is not complete, then the unitary
transformation may not be unique: see the caviat on the
previous page).

Since, the unitary transformation is unique, each eigenvector
is uniquely labelled by the eignvalue of each operator:
|λ1, λ2, · · · , λN〉. A quantum state is completely specified by
the eigenvalues of a complete set of commuting operators.
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Who is afraid of Hilbert spaces?

These words will not appear in this course again

1 We have seen how to define complete bases of vectors, and
how to use these bases to give the components of an arbitrary
vector. All possible vectors in a vector space are generated by
changing these components. A real vector space has real
components; a complex vector space needs complex
components.

2 A vector space is complete if every (Cauchy) sequence of
vectors converges to a point in the space. (Counterexample)

3 Every complete vector space is a Hilbert space. If the
components of the vectors are complex, then this is a complex
vector space.

4 A separable Hilbert space is one in which a countable set of
commuting operators exist, i.e., a countable set of eigenvalues
specify each vector.
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Summary: the postulates of quantum mechanics

Postulate 1

Starting from the analysis of the double slit experiment, we have
uncovered the fact that quantum states are elements of a vector
space. (Of a separable, complex Hilbert space, if you want to be
pedantic)

Postulate 2

The most natural construction on a vector space is of linear
operators, and we identified these with physical quantities.
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