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The Hilbert space

Normalizable wave functions are in the Hilbert space of square
integrable complex functions, sometimes called £2. A basis is given
by the plane waves, although the plane waves themselves do not lie
in £2. We resolve this problem first.

In (infinite) D-dimensional space, introduce the position operator ¥
and the momentum operator p. The eigenstates are ¥ |r) = r|r)
and p|p) = p|p). The normalized eigenstates are complete, and
therefore each forms a basis—

/ dr [r) (=1 and / dp |p) (p| = L.

The wavefunction of |¢) is the function (r|¢)) = 4(r). This is an
expansion of the state in the eigenbasis of . The position and
momentum eigenstates become
(rlp) = ;e"p'r/h and (r|r') = 6P(r — ¥).
(27)P



The Hilbert space

The two basic operators ¥ and p must be infinite dimensional. Now
we examine their matrix representations in the eigenbasis of t.
First note

(¥# ) = / dx (r]#|x) (x| ) = / dx x82( — x)ip(x) = r(r).

So t is diagonal and corresponds to multiplication by r. The
operator ¥ is clearly Hermitean. Is this obvious? Next:

(rlp[v)

[ dpax (b 1p) (pix)(x10) = [ dpdx pe /()
= /dp pe’P/ M) (p) = —/dp ih%e’p"/hi(p)

- —/n%¢(r).

(Is p Hermitean?)



The Hilbert space

We evaluate the commutator [F, ] using the representations of the
operators in the chosen basis. The commutator itself is an
operator which acts on the space £2. So we take a square
integrable function f(r) and evaluate the commutator on this—

[, Be]F(r) = in (dﬂr) s dgf:)) = il F(r).

The commutator is then [7, px] = ihdjk.
A straightforward induction can be used to show that

[7, PR] = ihdun(p)" "t therefore [, f(Pk)] = ihduf’(Pr).
The Baker-Campbell-Hausdorff relation is

1
e"eB = exp [A+B+§[A,B]+---],

where the dots denote multiple commutators. This can be checked
using the Taylor expansion of the exponential.
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The Hilbert space

Problem 6.1: Change of basis
States in the momentum basis are (p|¢)).

@ How are they related to the wavefunction? What are the
elements of the unitary matrix which makes this change of
basis?

@ What are the new representations of ¥ and p?

O Check that the commutator [p, ] is independent of basis.

| A\

Problem 6.2: The Baker-Campbell-Hausdorff formula

Find a method to generate any term of the
Baker-Campbell-Hausdorff formula. Implement this in
Mathematica, and examine the first 35 terms.
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The Hilbert space

Consider the operator T(x) = exp(—ix - p/h). Since p is
Hermitean, T is unitary (for real x). Also, since the p; commute
amongst themselves, the exponential factors into pieces

Ti(xj) = exp(—ix;p;/h). It is easy to check that
'Al'j_l(xj-) = exp(ix;pj/h), so that T=1(x) = T(—x). Also,

(7, T(x)] = % T(x)-

If #]r) = r|r), then it follows that #7(x) |r) = (r +x) T(x) |r). This
implies that

Q@ T(x)Ir)=Ir+x).

© The eigenvalues of ¥ are continuous and infinite.

© The Hilbert space is infinite dimensional.
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The Hilbert space

Take the infinitesimal translation operator
7A'(5x):1—é5x'ﬁ=1+5x'v.
Acting on any function f(r), its action is

T(Ox)F(r) =~ [1 4 6x - V] £(r) = f(r + 0x).

So this translation operator generates infinitesimal translations,
provided the derivative of the function exists.

Expanding the exponential to all orders, one sees that the
translation operator generates exactly the full Taylor expansion of
a test function—

[e.9]

T(6x)f(r) = [Z ! (6x- V)"

n=0

f(r).

So every translation operator generates exactly the expected
translation on sufficiently smooth test functions.
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The Hilbert space

A group consists of a set of elements G = {g;} and an operation
of multiplication between them such that
Q If gi and g; are elements of G then so is the product gjg;.
©Q There exists an unique element called the identity such that
lgi = &i.
© For every element g; € G, there is an unique element g,-_1 €eG
such that g,'g,._1 = .
O For gi, gj and gk in G, (gigj)ek = &i(gjgx)-
Example 1: The set {1, 01} is a group under matrix multiplication.
This is called the group Z», or the group of permutations of two
objects. The elements of the group commute. Such groups are
called Abelian groups.
Example 2: The set of all 2 x 2 unitary matrices is a group under
matrix multiplication. This group is denoted U(2). The elements
of this group do not commute. Since there is a continuous infinity
of the elements, this is called a continuous group.
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The Hilbert space

Consider the set of translation operators 7(x) for all x. The
operation of multiplication is defined to be the result of successive
translations. Then we find:

QO TH)T)IN =T Ir+x) =Ir+y+x) = T(y+x)[r). So
the set is closed under multiplication.

Q T(0) is the identity.

© For every translation by x, the translation by —x is the inverse.

@ Multiplication is associative.

Since there is a continuous infinity of elements, the group of
translations is a continuous group. It is also an Abelian group.

The translation group acting on the Hilbert space of position
eigenstates is isomorphic to the group of vector additions in the
Euclidean space RP.
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The Hilbert space

The quantum evolution (Schrodinger’s) equation is

. d A
i ) = F 1)

In the special case of a single particle of mass m in a central
potential the classical Hamiltonian is H = p?/(2m) 4 V/(r). The
corresponding quantum Hamiltonian is the operator
H=p2/2m) + V(?).

Problem 6.3: Single particle evolution equation

By taking matrix elements of H in eigenstates of 7, i.e., by
examining (r'| H|r), show that one gets the usual differential
equation

d/lj}(r) _ © g _ h2 2
e Hiy(r), where H = —%V + V(r). |
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The Hilbert space

Let us examine the Hamiltonians which have translation invariance.
In these cases [H, T(x)] = 0. Recall that

[?, T(x)] = xT(x) #0.

So H cannot involve # if it is to be translation symmetric. This
implies that V/(#) is constant, and therefore the particle is moving
without any force acting on it.

This is a proof that the only translational symmetric Hamiltonians
are those for a free particle. Call this the Hamiltonian Hy. We
have proved that Hy = p%/(2m) = —(h?/2m)V?.

Since p and Fo commute, the solutions of this Schrodinger
equation must be momentum eigenstates, i.e., plane waves. We
have already investigated these wavefunctions (r|p).
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A free particle

The free particle Hamiltonian is

and it describes a particle which is invariant under translations.
Since [I:Io, p] = 0, these operators can be diagonalized
simultaneously. Since the eigenstates of p are non-degenerate
(being the plane-wave states), Hy is diagonalized in this basis.
However, the eigenvalues of Hy are doubly degenerate:

Eo = p?/2m, having equal values for +p.

We have shown that all elements of the translation group commute
with Ho, so they are simultaneously diagonalizable. However, in
the diagonal basis of the translation group, Hy still has degenerate
eigenvalues. So there must be some other operator which
commutes with Hy. As a result, the symmetry group of the free
particle must be larger than that of translations.
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A free particle

The symmetry that we have missed out in the previous analysis is
parity. First we consider its properties in classical mechanics. It is
a D x D matrix acting on vectors: MNMr = —r, MNp = —p. So, in the
vector space RP it must have the representation I = —/. The set
{1,M} forms a group.

We are interested in the operator M acting on the Hilbert space of
quantum states of the free particle. Acting on momentum
eigenstates it must have the representation I1|p) = |—p).

Problem 6.4: Parity

Evaluate the commutators [11,p] and [1, T(x)]. Prove that
[[1,p%] = 0, so [[1, Hy] = 0. Prove that there are no other
operators which commute with Hp.
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A free particle

Construct the projection operators Py = (1£1)/2. These are

A

Hermitean since 1 is Hermitean. Since P2 = P, and P2 = P_,
their eigenvalues are 1 or 0. Also IA3+P_ P_ A+ =0, and hence
they project onto orthogonal subspaces.

Clearly [Py = £P,, so the states Py |1) are eigenstates of .
Any state |¢> can be split into a positive parity state

[, +) = P, |1) and a negative parity state |1, —) = P_ |¢)). Since
P+ + P_ =1, there is no other component.

From the eigenstates of the free particle Hamiltonian, |Ep), one

can construct Py |Ey) = |Ep, &), such that

cos(p - r/h)

V(2m)P

In this basis Ho and I are diagonal.
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A free particle

The states |Eg, &) are not in £2. One can construct normalized
wave functions in either of two ways. The older way is to make
linear combinations of plane waves which are in £2, called
wavepackets—

B(tr ) = / dpi(p, Ao E/ M (elp, ), where A — +1.

Wavepackets are not eigenstates of Hy. However, we have
arranged for them to be eigenstates of the parity operator. This
means that the packets generically have even number of maxima
which approach each other (or recede from each other) in time.

Problem 6.5: Wavepackets

Construct the expectation value of the momentum operator in any
wavepacket, and show that the average velocity is related to the
group velocity of the packet.
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A free particle

The modern method is to restrict the wavefunctions to lie within a
box, |r| < L. By imposing periodic boundary conditions

(r) = 1(0) = 0, one picks only a subset of all possible momenta.
Fourier integral transforms are replaced by Fourier series and
eigenstates of the Hamiltonian are in £2.

One finds expectation values of all operators in the problem for
finite L, and takes the limits of these expectation values as

L — oo. Since physics is only concerned with observables and not
with wavefunctions, this procedure is perfectly well defined.

The translation symmetry of the Hamiltonian is broken to a
discrete subgroup, and parity symmetry is retained. The
eigenfunctions of the Hamiltonian are |p, £) where

pj = 2mn;/(2L). The boundary conditions on the wavefunction has

given quantization of the energies: E = (W/L)\/ZjDzl nj?.
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A free particle

@ Both methods are meant to resolve the problem that the
eigenstates of o are not in £2. Both break the symmetry of
Ho.

@ Wavepackets break translational symmetry completely, but
can be made symmetric (or antisymmetric) under parity.

@ We have not picked a basis in the wavepackets. This is a
non-trivial problem, and requires much mathematical
development.

o The eigenstates of o in a box retain a larger part of the
symmetry of the original problem.

o Expectation values of the momentum and position for each of
the eigenvectors in a box vanishes.

@ One can construct wavepackets in a box. This not necessary,
but provides an easier method of studying wavepackets than
the formal theory of analytic functions.
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A free particle

Keep only a lattice of points r = aN, where the elements of N are
integers, and a is the lattice spacing. Take each component of N
to vary from 1 to L. Clearly ¥ becomes a finite dimensional square
matrix.
@ Define the Fourier transformations carefully: find the allowed
values of p, and the amplitudes (r|r'), and (r|p).
Q Exhibit the matrix representations of ¥ and p explicitly in the
eigenbasis of .
© Find the commutator [¢, p]. Does this depend on the precise
definition of the amplitude (r|p).
@ Is the Hilbert space separable? Does it change character when
a— 07
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A free particle

In the previous problem one can consider two “nearest neighbour”
lattice points which have the same coordinates except in the
direction j. If N has components /;, then the nearest neighbour
vector, M) has components N; except when i = j; and then
MY = N +1.

Can one combine ¥ and p into ladder operators which connect the
states |[N) and ‘MU)>? Can you write down the ladder operators

as a square matrix and examine it?

What is the algebra of such matrices? What are the commutation
relations? What are their characteristic equations?
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