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The experimental setup

The simplest setup for studying convection would be fluid
contained within two walls— the lower one at temperature ©¢ and
the upper one at ©p + d© (we need not assume that d© is
positive). The distance between these walls is H.

Heat is transferred in two ways. One is by conduction. Fourier’s
law for heat conduction states that the flux of heat, g, is given by

g=—A ﬁ,
where ) is called the heat conductivity. The heat flux is the heat
that passes through a unit area in unit time. The second method is
by convection. Materials become lighter on being heated, and rise
against gravity, carrying the heat stored in the material. This latter
depends on the specific heat, ¢, defined as the increase in the heat
content of a material per unit mass per degree rise in temperature.
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Convection

Other relevant variables

Heated fluids rise against gravity since the density decreases with
increase in temperature. If d© is small, then one can apply
Boussinesq's approximation. This states that the buoyancy will be
ag, where « is the fractional increase in volume per degree rise in
temperature and g is the acceleration due to gravity. One also
needs the density of the fluid, p, measured at temperature ©y.
Since the fluid is moving, its viscosity, 77, at the temperature Ty,
may play a role in the problem. Newton's experiment utilizes the
same setup to measure viscosity, by measuring the strain (force per
unit area), 7 required to move the upper plate at a constant
velocity, U, against the fluid. Then, one has

)
T = T]ﬁ,
We will use units with Joule's constant, J = 1, and Boltzmann’'s
constant, kg = 1.
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Convection

Dimensions

The dimensions needed are the usual mechanical quantities M, L,
T. Since J = kg = 1, the units of heat and temperature can be
taken to be those of energy. From the definitions

[Hl=L [pl=ML [g]=ML'T"Y [dO] = ML*T 2.
The new thermal quantities are
logl = ML =M = LT

With 7 quantities and 3 different dimensions, one will have 4
independent dimensionless quantities. Fluid properties encode
microscopic properties of materials, and the experimentally
determined parameters are the mesoscopic scales of the
experiment. There are two of them: H is the length scale of the
experiment, and d© is the energy scale. We would like to find the
relation between them when convection sets in.
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Convection

Intrinsic length scales

Note that p and ag involve only length and mass. So one can
construct two quantities of dimension length using these two and
c. Oneis r = 1/(cp)'/3; for water we find it is about 0.15 nm.
The other quantity is £ = ¢/(ag). For water we find that ¢ = 2000
Km. Note that both of these length scales are intrinsic to the fluid,
and must be due to its molecular properties. Clearly, H is a
mesoscopic scale which lies between the two.

The dimensionless quantities we build out of these two length are

H\3 c ¢
My =cpH3 = | — Ny = =,
4 cp <r>7 3 OégH H

Since the experiment will typically involve H ~ 0.1 m. Then, of
course, My > 1 and M3 > 1. Also, since {/r ~ 1015 there is a
large range of H for which 34 > 1.
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Convection

Two intrinsic time scales

There are two time scales in the problem: one is a frictional time
scale t = 1/(nHc), the other is due to heat conduction

7 = 1/(AH). Both are due to the interplay between intrinsic fluid
parameters and the external experimental setup.

The dimensionless Prandtl number is a combination which depends
only on properties of the fluid—

nc T

My =Pr = S
This determines the relative importance of frictional losses. For
water at about 300 K, Pr is of the order of 10°.
For H = 0.1 m, the larger of the two times scales, 7 ~ 1072? 5. A
mesoscopic time scale is set by /H?/dOc. If we set d© ~ 10 K,
then this is about 0.5 ms. Since there is a tremendous mismatch
between microscopic and experimental time scales, the former may
not be easy guides to the physics of interest.

Sourendu Gupta Similarity and incomplete similarity



Convection

Comparison of forces

Instead, we should focus on the actual physics of convection.
Heating causes expansion, and the resulting buoyancy forces the
fluid to move. This is opposed by dissipative forces, due entirely to
intrinsic quantities.

The dissipative force has to be proportional to 7, and must involve
the microscopic volume r3 = 1/cp. The simplest quantity which
makes a force using these is f = n\/(cp). Since the driving force
is buoyancy, it must involve agpd®. Since the fluid volume is H3,
the driving force F = agpd©®H3. The ratio is called the Raleigh

number, ) X
F dOH
M, = Ra = _ = 8P 9=
f nA
The solution of the problem is a relation Ra = f([My, M3, M4).
Clearly, this problem would have been simplest to solve in terms of

units of force, length and time.
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Similarity flow

Ra = (M2, M3, M4) could either tend to a constant or increase
without bound as N34 — oo. If it is constant, then we can take
f(My, 00,00) = f(My). This gives a similarity flow. The
nomenclature comes from the fact [, is fixed for a given liquid,
and so, flows for different H and d© must have the same value of
Ra. This gives the scaling law d© o< 1/H3. If this works, then it
gives evidence that our hypothesis is correct.

For Ra < R, there is no convection; viscous friction wins. For

Ra > R, buoyancy wins, convection sets in and cells of oppositely
circulating fluid are created. R. ~ 650 when the lower surface of
the fluid is in contact with a rigid surface, and the upper surface is
free. When both bounding surfaces are rigid, one finds R. ~ 1700.
Our analysis has not touched on the size of cells.
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Fractals

Perimeters and polygons

s

The arc length of a curve, L, whose ends are a distance r apart,
can be approximated by a segment of a polygon with sides of
length, d. A dimensional argument tells us that

L(r)=rlim ® (5) ,

d—0

since one gets successively better approximations to the curve by
decreasing the size of the edge of the approximating polygon.
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Similarity and incomplete similarity

In the limit M = r/d goes to infinity. A similarity hypothesis is that
®(00) has a good limit. For example, for a semicircle,

®(00) = m/2. These are simple curves described by functions
which are smooth, with continuous first derivatives.

However, for most curves the limit does not exist. For a larger
class of these curves a fairly simple hypothesis called incomplete
scaling may hold. This is the assumption that ®(1) = ¢, where
« is a positive number. In this case L(r) o< r’*<, although the
limit does not exist. The curve is called a fractal; « is called an
anomalous dimension and D = 1 4 « is called a fractal dimension.

Fractals have broken scale invariance

For fractals the unit of the measuring scale, d, leaves a trace.
Invariance with respect to d is broken, and this quantity does not
disappear from the formula. This is the origin of the anomalous
dimension.
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The Koch curve

Initiator
Length=1

If' \ Generator
Length=4/53
MLEWI 2
Length=16/9

Lewvel 3
Length=-64727

The set of fractals is not empty!
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Renormalization

Dimensional analysis and homogenous functions

Recall how dimensional analysis involves homogenous functions. In
a physical problem list all the n variables of interest, choose the
basis set of m of them, Uy, Us, ---, U, and write the others as
A1, Az, -+, Ak, where k + m = n. Then a physical relation will be

Al = F(U13U2a”' 7Um7A27A37”' 7Ak)'

One can construct k dimensionless quantities, M; = A;/[] U;U. In
terms of these one can write the same relation as

Az Ak
A = Ui?11Ué912 U;;lm f <Uf21U§22 U;zm"“ Ufk1U§k2 Uﬁqkm> )

or, more compactly as,

I_I]. - f(rl27 I_|37’ T 7r|k)'
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Renormalization

Similarity and incomplete similarity

The function f is said to possess similarity if it has a finite and
non-zero limit as any one of these I1; go to zero or infinity. Then,
in that limit, the functional dependence can be dropped to give

My =f(My, M3, -, My_q) My — oo.

Since the labelling of the variables is immaterial, in the case when
k — £ of the dependences can be dropped we write

My = (Mo, N3, -+, M) M, — oo Vi>L.

Clearly this is a very special class of functions. In general no
simplification can occur. However, there is a wider class which has
the property of incomplete similarity

I_|1: ne g< PRI >
[g ' ] [Tis, 17 [Tise M7

The exponents «;; are called anomalous dimensions.
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Incomplete similarity

Incomplete symmetry also involves homogeneous functions and can

. . . . * . Qi
be written in terms of renormalized variables, I'Ij = I'IJ/H,->€ M.,
as

i = g(r@, n}t’ T 7“?)'
Note that similarity is included within incomplete similarity as the
special case when all a; = 0.

We saw earlier that the tool for developing dimensional analysis is
the invariance of physics under scaling of units of measurement.
The tool for investigating incomplete symmetry is also such
scaling, restricted to the domain where some of the dimensionless
parameters become large or small. This analysis is called a
renormalization group analysis.

Finally, note that there are many functions f which do not allow
compression of variables beyond ordinary dimensional analysis.
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Renormalization

Renormalization group transformations

The renormalization group arises if there is a scale invariance of
the form

N =¢&M0; for (4+1<i<k
njzlngj"ff] N, for 1<j<¢
i>f

Since this is supposed to hold only for very large or very small
values of IN; (with i > £), the range of &; is restricted to be not
very different from 1. The proof that this leads to incomplete
similarity follows the same lines as dimensional analysis.

In the most general case, even this kind of restricted scaling does
not hold. Then dimensional analysis gives much weaker results.
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What dimensional analysis leads to

Only dimensional analysis: can be used to discover new phenomena

Scaling: full solution

Incomplete scaling and the renormalization group: can be used for partial solution
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Scattering

Inclusive scattering

B H

Inclusive cross section for the reaction A+ B —anything: o.
Semi-inclusive cross section for A+ B — H4-anything: aﬁB. The
only observation about the final state is whether H is produced or

not.
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|dentify the variables

We want to study the inclusive scattering cross section, o. The
initial state momenta must be important variables. In the CM
frame of the initial particles

PA:(E70505P)7 PB:(E/70505_p)'

The cross section is Lorentz invariant, so it cannot depend on the
components of the momenta, only on dot products of vectors.
Define

S = (PA + PB)Z.

Since P5+ Pg = (E + E’,0,0,0), therefore /S is the CM energy.
M, and Mg could also be important variables. So we have

g = f(S, MA, MB)-
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Scattering

Dimensional analysis

Since we have a relativistic quantum problem, we set h = ¢ = 1.
Then
[o] = M2, [S]=M? [Ma]=[Mg]=M.

There are 4 variables and one dimension, so there are 3
dimensionless combinations. Write them as
M M
N = oS, n2:—é, ===

Then we have o = f([My,M3)/S.

The behaviour at very high energy could scale. Since I3 — 0, we
can assume that f goes to a constant. Then o = f/S.
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Electron cross sections: scaling
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Scattering

Hadron cross sections: weird

L =p e E
H np, w'p

1 Kp, K

Total cress section (mb)
T
L

mﬂ; }i’t 1“ i YVM_//
i "WW JE(GeV)j

T 3 T
' 0 10 1 "
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Broken scaling

Dimensional analysis of cross sections gives o = f([M2,M3)/S. For
asymptotically high energy, as >3 — 0, if there is broken scaling,
then one may be able to write

oo S/

The anomalous dimension « is compensated by an appropriate
power of one of the masses.

This result comes from the behaviour f(y, MN3) ~ g‘g(l'l3/l'lg).
In that case there may be subleading corrections of the form of
g(S=1)/2). Cross sections which rise asymptotically are possible
examples of such broken scaling. Computing the values of the
anomalous dimensions « and 3 from the theory of strong
interactions is an open problem.
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