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Perturbation theory: expansion of amplitudes in loops

Any amplitude in a QFT can be expanded in the number of loops.
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Perturbation theory: expansion of amplitudes in loops

Born 1 loop 3 loop
I=1, V=2 I=4, V=4

2 loop 
I=7, V=6 I=10, V=8

Any amplitude in a QFT can be expanded in the number of loops.

L = 1 + I − V
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Perturbation theory: expansion of amplitudes in loops

Born 1 loop 3 loop
I=1, V=2 I=4, V=4

2 loop 
I=7, V=6 I=10, V=8

Any amplitude in a QFT can be expanded in the number of loops.

L = 1 + I − V

Problem 2.1

Prove the equation. Prove that the expansion in loops is an
expansion in ~, so is a semi-classical expansion. The number of
unconstrained momenta is equal to the number of loops, giving an
integral over each loop momenta. (Hint: See section 6.2 of
Quantum Field Theory , by Itzykson and Zuber.)
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Ultraviolet divergences

Typical loop diagrams give rise to integrals of the form

Imn =

∫

d4k

(2π)4
k2m

(k2 + ℓ2)n

where k is the loop momentum and ℓ may be some function of the
other momenta and the masses. When 2m + 4 ≥ 2n, then the
integral diverges.
This can be regularized by putting an UV cutoff, Λ.

Imn =
Ω4

(2π)4

∫ Λ

0

k2m+3dk

(k2 + ℓ2)n
=

Ω4

(2π)4
ℓ2(m−n)+4F

(

Λ

ℓ

)

,

where Ω4 is the result of doing the angular integration. The cutoff
makes this a completely regular integral. As a result, the last part
of the answer can be obtained entirely by dimensional analysis.
What can we say about the limit Λ → ∞?
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=

Ω4
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where Ω4 is the result of doing the angular integration. The cutoff
makes this a completely regular integral. As a result, the last part
of the answer can be obtained entirely by dimensional analysis.
What can we say about the limit Λ → ∞? ???
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The old renormalization

We start with a Lagrangian, for example, the 4-Fermi theory:

L =
1

2
ψ/∂ψ − 1

2
mψψ + λ(ψψ)2 + · · ·

Here all the parameters are finite, but the perturbative expansion
diverges, as we saw. We add counter-terms

Lc =
1

2
Aψ/∂ψ − 1

2
Bmψψ + λC (ψψ)2 + · · ·

where A, B , C , etc., are chosen to cancel all divergences in
amplitudes. This gives the renormalized Lagrangian

Lr =
1

2
ψr
/∂ψr −

1

2
mrψrψr + λr (ψrψr )

2 + · · ·

Clearly, ψr = Zψψ where ψr =
√
1 + A, mr = m(1 + B)/(1 + A),

λr = λ(1 + C )/(1 + A)2, etc.. The 4-Fermi theory is an
unrenormalizable theory since an infinite number of counter-terms
are needed to cancel all the divergences arising from L.
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Review problems: understanding the old renormalization

Problem 2.2: Self-study

Study the proof of renormalizability of QED to see how one identifies all

the divergences which appear at fixed-loop orders, and how it is shown

that taking care of a fixed number of divergences (through

counter-terms) is sufficient to render the perturbation theory finite. The

curing of the divergence requires fitting a small set of parameters in the

theory to experimental data (a choice of which data is to be fitted is

called a renormalization scheme). As a result, the content of a QFT is to

use some experimental data to predict others.

Problem 2.3

Follow the above steps in a 4-Fermi theory and find a 4-loop diagram

which cannot be regularized using the counter-terms shown in Lc . Would

your arguments also go through for a scalar φ4 theory? Unrenormalizable

theories require infinite amount of input data.
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Dimensional regularization

The UV divergences we are worried about can be cured if D < 4.
So, instead of the four-dimensional integral, try to perform an
integral in 4 + δ dimensions, and then take the limit δ → 0−. Since
everything is to be defined by analytic continuation, we will not
worry about the sign of δ until the end.

The integrals of interest are

Imn =

∫

d4k

(2π)4
k2m

(k2 + ℓ2)n
→

∫

d4+δk

µδ(2π)4+δ
(k2δ + k2)m

(k2δ + k2 + ℓ2)n
,

where we have introduced an arbitrary mass scale, µ, in the second
form of the integral in order to keep the dimension of In
unchanged. Also, the square of the 4 + δ dimensional momentum,
k , has been decomposed into its four dimensional part, k2, and the
remainder, k2δ .
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Doing the integral in one step

Usually one does the integral in 4 + δ dimensions in one step:

Imn = µ4−D

∫

dDk

(2π)D
k2m

(k2 + ℓ2)n

= ℓ2m+4−2n

(

ℓ

µ

)D−4 ΩD

(2π)D
Γ(m + D/2)Γ(n −m − D/2)

2Γ(n)
,

where ΩD = Γ(D/2)/(2π)D/2 is the volume of an unit sphere in D

dimensions.

For m = 0 and n = 1, setting D = 4− 2ǫ, the ǫ-dependent terms
become

(

ℓ2

4πµ2

)

−ǫ

Γ(−1 + ǫ) = −1

ǫ
+ γ − 1 + log

[

ℓ2

4πµ2

]

+O(ǫ),

where γ is the Euler-Mascheroni constant.
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Doing the integral in two steps

One can do this integral in two steps, as indicated by the
decomposition given below

I 0n =

∫

d4k

(2π)4
1

(2πµ)δ

∫

dδk

(k2δ + k2 + ℓ2)n
,

Simply by power counting, one knows that the internal integral
should be a k-independent multiple of (k2 + ℓ2)−n+δ/2. In fact,
this is most easily taken care of by the transformation of variables
k2δ = (k2 + ℓ2)x2. This gives

∫

dδk/(2πµ)δ

(k2δ + k2 + ℓ2)n
=

1

(k2 + ℓ2)n

(

k2 + ℓ2

2πµ

)δ

Ωδ

∫

xδ−1dx

(1 + x2)n

where Ωδ is the angular integral in δ dimensions. The last two
factors depend only on δ and n, the first factor reproduces In, so
the regularization is due to the second factor.
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Recognizing the regularization

The regulation becomes transparent by writing

(

k2 + ℓ2

2πµ

)δ

= exp

[

δ log

(

k2 + ℓ2

2πµ

)]

.

For fixed µ, the logarithm goes to a constant when k → 0. Also,
the logarithm goes to −∞ when k → ∞. As a result, the
regulating factor goes to zero provided δ < 0. This is exactly the
intuition we started from.

In the context of dimensional regularization, the quantity µ is
called the renormalization scale. We have seen that it gives an
ultraviolet cutoff. The important thing is that the scale µ is
completely arbitrary, and has nothing to do with the range of
applicability of the QFT.
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The old renormalization

In 1929, Heisenberg and Pauli wrote down a general formulation
for QFT and noted the problem of infinities in using perturbation
theory. After 1947 the problem was considered solved. The general
outline of the method is the following:

◮ Analyze perturbation theory for the loop integrals which have
ultraviolet divergences.

◮ Regulate these divergences by putting an ultraviolet cutoff in
some consistent way.

◮ Identify the independent sources of divergences, and add to
the Lagrangian counter-terms which precisely cancel these
divergences.

◮ QFTs are called renormalizable if there are a finite number of
counter-terms needed to render perturbation theory useful.

◮ Use only renormalizable Lagrangians as models for physical
phenomena.
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Unrenormalizable terms

In this view, the unrenormalizable Lagrangian

Lint = −λ(ψψ)2,
was deemed impossible as a model for physical phenomena, since it
needs an infinite number of counter-terms.

q

k k

Examine its contribution to the fermion mass:

imλ

∫

d4q

(2π)4
1

q2 −m2
∝ λmΛ2,

where the integral is regulated by cutting it off at the scale Λ. At
higher loop orders the dependence on Λ would be even stronger. In
the modern view, this analysis is mistaken because it confuses two
different things.
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Irrelevant terms

Today the same Lagrangian is written as

Lint = − λ

Λ2
(ψψ)2,

where Λ is interpreted as a scale below which one should apply the
theory.
The contribution to the mass is

imλ

Λ2

∫

d4q

(2π)4
1

q2 −m2
=

m3

16π2Λ2

(

−1

ǫ
+ γ − 1 + log

[

m2

4πµ2

])

,

where the integral regulated by doing it in 4− 2ǫ dimensions. In
the MS renormalization scheme the counter-term subtracts the
pole and the finite parts γ − 1− log 4π, leaving

δm

m
=

λ

16π2

(m

Λ

)2
log

[

m2

µ2

]

.
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Separation of scales

The cutoff scale in the problem, Λ, is dissociated from the
renormalization scale, µ, in dimensional regularization. This is not
true in cutoff regularization. This separation of scales allows us to
recognize two things:

◮ There is no divergence in the limit Λ → ∞; instead the
coupling becomes irrelevant. The theory remains predictive,
because the effect of these terms is bounded.

◮ There are no large logarithms such as log(m/Λ). The
amplitudes, computed to all orders are independent of µ,
although fixed loop orders are not. In practical fixed
loop-order computations, it is possible to choose µ ≃ m, and
reduce the dependence on this spurious scale.

Regularization schemes which do this are called mass-independent
regularization. They are a crucial technical step in the new
Wilsonian way of thinking about renormalization.
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Is cutoff regularization wrong?

All regularizations must give the same results when the
perturbation theory is done to all orders. Cutoff regularization is
just more cumbersome.

Cutoff regularization retains all the problems of the old view: since
the cutoff and renormalization scales are not separated, higher
dimensional counter-terms are needed to cancel the worsening
divergences at higher loop orders. When all is computed and
cancelled, the m2/Λ2 and log(m/Λ) emerge.

In mass-independent regularization schemes, higher dimensional
terms give smaller corrections because of larger powers of m/Λ.

In a renormalizable theory, since the number of counter-terms is
finite and small, the equivalence of different regularizations is
easier to see.
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Chiral symmetry: an important secondary issue

In this example we find that δm ∝ m; if the bare mass were zero,
then the renormalized mass remains zero. There is a symmetry
reason behind this.

A Dirac spinor can be resolved into left and right handed
components using the projection operators 1± γ5. The two
components are decoupled in the kinetic term, but coupled by the
mass term. In the absence of the mass term at the tree level, the
theory has chiral symmetry: ψ → γ5ψ.

If chiral symmetry is not broken by Lint, then the mass
renormalization must vanish as m → 0. Chiral Ward identities can
say which terms in Lint are allowed by chiral symmetry.
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