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Context
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Resummed series expansion of pressure. How to check whether
there is good control of the series coefficients, i.e., non-linear
QNS? One answer by Datta, Gavai, Gupta (Lattice 2013). Another
answer in this talk.
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Critical behaviour

The free energy of a system may be decomposed into a regular and
a singular part,

F (T ,m) = Fr (T ,m) + Fs(T ,m),

where the regular part, Fr , does not resolve anything singular at
the critical point. The singular part, Fs has a scaling form

Fs(T ,m) = t2−αΦ(τ), where t =

∣

∣

∣

∣

1−
T

Tc

∣

∣

∣

∣

, τ =
t

m1/βδ
.

As a result,

cV =
∂2F

∂T 2
≃ t−α,

and the specific heat diverges at Tc with a critical exponent α
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The free energy of a system may be decomposed into a regular and
a singular part,

F (T ,m) = Fr (T ,m) + Fs(T ,m),

where the regular part, Fr , does not resolve anything singular at
the critical point. The singular part, Fs has a scaling form

Fs(T ,m) = t2−αΦ(τ), where t =
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, τ =
t

m1/βδ
.

As a result,

cV =
∂2F

∂T 2
≃ t−α,

and the specific heat diverges at Tc with a critical exponent α
as long as α > 0.
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O(N) critical exponents in 3D

β δ α

O(∞) 1/2 5 -1 [Antonenko et al, 1995]
O(4) chiral QCD 0.380 4.86 -0.2268 [Engels et al, 2000]
O(3) ? 0.365 4.79 -0.115 [Zinn-Justin et al, 1977]
O(2) liquid He 0.349 4.78 -0.0172 [Engels et al, 2000]
O(1) liquid-gas 0.325 4.8 0.11 [Zinn-Justin et al, 1977]

MFT 1/2 3 0

Specific heat exponent, α, always negative for N > 1.

But, for liquid He, experiments show a peak in cV at Tc . Why?
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The λ point of liquid Helium
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Vakarchuk, Pastukhov, Prytula, arxiv:1110.3941

When α is negative, contribution of Fs to cV (Tc) = 0. So the
value of cV (Tc) = 0 is entirely due to the regular part. There is a
cusp at Tc : non-anaylticity, must be due to Fs .
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Critical indices from the λ point

When |T − Tc | is small enough,
contribution of regular part can be taken to
be a constant. Then

cV = A+ t−α(B + Ct∆),

where ∆ is a possible sub-leading
exponent. A is constrained to be positive,
so B must be negative.

By taking explicit derivatives, it can be
shown that it is possible to do this with
Φ(τ) > 0. So the internal energy need not
be negative.

Lipa et al, PRL 76, 944 (1996)

Space shuttle based

experiment measured cp

for |T − Tc | ≤ 2 nK.

Found α = −0.01285(38).
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Weirdness as N→ ∞

In the limit N → ∞, it is seen that α = 1. As a result, one expects

cV ≃ Ar + Bst + · · · ,

with Ar > 0 and Bs < 0. The Taylor expansion of the regular term
can also give a linear term, Br t. So one has

cV ≃ Ar + (Br + Bs)t + · · · .

Since the regular part may depend on non-universal terms, it may
be possible to have O(N→ ∞) models which have no λ point.

It may be possible to have O(N→ ∞) models which have a specific
heat minimum at cV .
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The NJL model

P/NJL models have the O(4) symmetry of QCD in the chiral limit.
The quark mass m is the analogue of the magnetic field. Then

cV (T ,m) = A+ t−αΨ(τ), where t =

∣

∣

∣

∣

1−
T

Tc

∣

∣

∣

∣

, τ =
t

m1/βδ
.

Tc and other non-universal features change between NJL and
PNJL, but universal critical features remain the same.

1 No singularities if the T → Tc at fixed m, i.e., t → 0 and
τ → 0.

2 λ point can be seen only when m → 0 before T → Tc . Must
take τ → ∞ first and then t → 0.
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The specific heat
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Data collapse successful when small τ is removed. What controls
how large τ should be? Combinations of Fπ and 〈ψψ〉.
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The phase diagram of chiral QCD

µ

T (  ) : O(4) critical line

T

excess baryonsexcess antibaryons

c µ

CP symmetry implies symmetry µ↔ −µ. As a result, the critical
line is even in µ—

Tc(µ) = Tc +
1

2
κµ2 + · · ·
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The quark number susceptibilities

Then, for chiral QCD, if one assumes that the scaling function
depends on µ only through Tc(µ), one finds

∂

∂t
g(t, τ)

∣

∣

∣

∣

µ=0

=
2Tc

κ

∂2

∂µ2
g(t, τ)

∣

∣

∣

∣

µ=0

when the derivatives are applied to scaling functions. As a result,
χ4 ∝ cV in the chiral limit.

Caveat

The more complicated possibility of a new scaling variable m(µ),
has not been ruled out. We use the simpler alternative for now.

ILGTI Lambda point phenomena



Introduction NJL model Lattice Summary

Scaling via data collapse
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Nf = 2 QCD with Nt = 4, and O(4) exponents. Largest pion mass
may be outside the scaling regime.
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The QCD third order phase transition

α < 0 but 1 + α > 0, so derivative of cV is singular and universal.
So QCD in the chiral limit has a third order phase transition!

Ehrenfest vs Wilson

A century ago Ehrenfest proposed a classification of phase
transitions depending on which order of derivative of F diverged.
In the Wilsonian approach a transition is either critical or first
order. If it is critical then the values of critical exponents
determine which orders of derivatives diverge.
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The scaling of χ6 with m

χ

Τ−Τc

6

Chiral limit

Finite mass

Critical exponent: 1 + α, so regular contribution negligible for
m = 0. Scaling analysis by data collapse possible.
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Scaling via data collapse
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Nf = 2 QCD with Nt = 4, and O(4) exponents. Quality similar to
χ4.
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Summary

1 Negative specific heat exponent in QCD, as for liquid He or
BES, leads to cV with subtle interplay of singular and regular
behaviour.

2 The shape of the phase diagram of QCD makes it possible to
relate QNS (in limit m → 0) to derivatives of free energy with
respect to T . Jacobian measured by various lattice groups.
More precision may be expected in future.

3 Scaling analysis of QNS measured in Nt = 4 simulations
presented. Data collapse shows that scaling regime may be
reached for mπ/mρ < 0.35. Range of data collapse similar for
χ4 and χ6.

4 HRG has no singular contribution, and so must miss QCD
values of NLS.
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