

Lambda point phenomena

Sourendu Gupta with Nikhil Karthik, Pushan Majumdar, Rishi Sharma

ILGTI, TIFR Mumbai

16 November, 2014, CPOD

3 The non-linear QNS in QCD

Introduction	NJL model	Lattice	Summary

Introduction	NJL model	Lattice	Summary
Context			

SG, Karthik, Majumdar, 1405.2206

Resummed series expansion of pressure. How to check whether there is good control of the series coefficients, *i.e.*, non-linear QNS? One answer by Datta, Gavai, Gupta (Lattice 2013). Another answer in this talk.

Introduction	
meroduceion	

NJL model

Lattic

Context

SG, Karthik, Majumdar, 1405.2206

Resummed series expansion of pressure. How to check whether there is good control of the series coefficients, *i.e.*, non-linear QNS? One answer by Datta, Gavai, Gupta (Lattice 2013). Another answer in this talk.

Introduction	NJL model	Lattice	Summary
Critical behaviour			

The free energy of a system may be decomposed into a regular and a singular part,

$$F(T,m)=F_r(T,m)+F_s(T,m),$$

where the regular part, F_r , does not resolve anything singular at the critical point. The singular part, F_s has a scaling form

$$F_s(T,m) = t^{2-lpha} \Phi(\tau), \quad ext{where } t = \left| 1 - rac{T}{T_c} \right|, \quad au = rac{t}{m^{1/eta\delta}}.$$

As a result,

$$c_V = rac{\partial^2 F}{\partial T^2} \simeq t^{-lpha},$$

and the specific heat diverges at T_c with a critical exponent α

Introduction	NJL model	Lattice	Summary
Critical behaviour			

The free energy of a system may be decomposed into a regular and a singular part,

$$F(T,m)=F_r(T,m)+F_s(T,m),$$

where the regular part, F_r , does not resolve anything singular at the critical point. The singular part, F_s has a scaling form

$$F_s(T,m) = t^{2-lpha} \Phi(\tau), \quad ext{where } t = \left| 1 - rac{T}{T_c} \right|, \quad au = rac{t}{m^{1/eta\delta}}.$$

As a result,

$$c_V = rac{\partial^2 F}{\partial T^2} \simeq t^{-lpha},$$

and the specific heat diverges at T_c with a critical exponent α as long as $\alpha > 0$.

1			
mu	.rou	uction	

O(N) critical exponents in 3D

		β	δ	α	
$O(\infty)$		1/2	5	-1	[Antonenko et al, 1995]
O(4)	chiral QCD	0.380	4.86	-0.2268	[Engels et al, 2000]
O(3)	?	0.365	4.79	-0.115	[Zinn-Justin et al, 1977]
O(2)	liquid He	0.349	4.78	-0.0172	[Engels et al, 2000]
O(1)	liquid-gas	0.325	4.8	0.11	[Zinn-Justin et al, 1977]
MFT		1/2	3	0	

Specific heat exponent, α , always negative for N > 1.

But, for liquid He, experiments show a peak in c_V at T_c . Why?

Introduction NJL model Lattice Summary

The λ point of liquid Helium

Vakarchuk, Pastukhov, Prytula, arxiv:1110.3941

When α is negative, contribution of F_s to $c_v(T_c) = 0$. So the value of $c_v(T_c) = 0$ is entirely due to the regular part. There is a cusp at T_c : non-analyticity, must be due to F_s .

L

Critical indices from the λ point

When $|T - T_c|$ is small enough, contribution of regular part can be taken to be a constant. Then

$$c_{V} = A + t^{-\alpha} (B + C t^{\Delta}),$$

where Δ is a possible sub-leading exponent. A is constrained to be positive, so B must be negative.

By taking explicit derivatives, it can be shown that it is possible to do this with $\Phi(\tau) > 0$. So the internal energy need not be negative.

Lipa et al, PRL 76, 944 (1996)

Space shuttle based experiment measured c_p for $|T - T_c| \le 2$ nK. Found $\alpha = -0.01285(38)$.

In the limit $N \to \infty$, it is seen that $\alpha = 1$. As a result, one expects

$$c_V \simeq A_r + B_s t + \cdots,$$

with $A_r > 0$ and $B_s < 0$. The Taylor expansion of the regular term can also give a linear term, $B_r t$. So one has

$$c_V \simeq A_r + (B_r + B_s)t + \cdots$$

Since the regular part may depend on non-universal terms, it may be possible to have $O(N \rightarrow \infty)$ models which have no λ point.

It may be possible to have $O(N \rightarrow \infty)$ models which have a specific heat minimum at c_V .

NJL model	Lattice	Summary

The non-linear QNS in QCD

P/NJL models have the O(4) symmetry of QCD in the chiral limit. The quark mass *m* is the analogue of the magnetic field. Then

$$c_V(T,m) = A + t^{-lpha} \Psi(au), \quad ext{where } t = \left| 1 - rac{T}{T_c}
ight|, \quad au = rac{t}{m^{1/eta \delta}}.$$

 T_c and other non-universal features change between NJL and PNJL, but universal critical features remain the same.

- No singularities if the $T \rightarrow T_c$ at fixed *m*, *i.e.*, $t \rightarrow 0$ and $\tau \rightarrow 0$.
- ② λ point can be seen only when $m \to 0$ before $T \to T_c$. Must take $\tau \to \infty$ first and then $t \to 0$.

	NJL model	Lattice	Summary
The specific heat			

Data collapse successful when small τ is removed. What controls how large τ should be? Combinations of F_{π} and $\langle \overline{\psi}\psi \rangle$.

JL model	Lattice	Summary

3 The non-linear QNS in QCD

CP symmetry implies symmetry $\mu \leftrightarrow -\mu$. As a result, the critical line is even in μ —

$$T_c(\mu) = T_c + \frac{1}{2}\kappa\mu^2 + \cdots$$

	NJL model	Lattice	Summary
The quark number	suscentibilities		

Then, for chiral QCD, if one assumes that the scaling function depends on μ only through $T_c(\mu)$, one finds

$$\left. \frac{\partial}{\partial t} g(t,\tau) \right|_{\mu=0} = \left. \frac{2T_c}{\kappa} \frac{\partial^2}{\partial \mu^2} g(t,\tau) \right|_{\mu=0}$$

when the derivatives are applied to scaling functions. As a result, $\chi_4 \propto c_{\rm V}$ in the chiral limit.

Caveat

The more complicated possibility of a new scaling variable $m(\mu)$, has not been ruled out. We use the simpler alternative for now.

	NJL model	Lattice	Summary
Scaling via dat	ta collapse		

SG, Karthik, Majumdar, 1405.2206

 $N_f = 2$ QCD with $N_t = 4$, and O(4) exponents. Largest pion mass may be outside the scaling regime.

The QCD third order phase transition

 $\alpha < 0$ but $1 + \alpha > 0$, so derivative of c_v is singular and universal. So QCD in the chiral limit has a third order phase transition!

Ehrenfest vs Wilson

A century ago Ehrenfest proposed a classification of phase transitions depending on which order of derivative of F diverged. In the Wilsonian approach a transition is either critical or first order. If it is critical then the values of critical exponents determine which orders of derivatives diverge.

Critical exponent: $1 + \alpha$, so regular contribution negligible for m = 0. Scaling analysis by data collapse possible.

Casting in	det e			
		NJL model	Lattice	Summary

Scaling via data collapse

I

SG, Karthik, Majumdar, 1405.2206

 $N_f = 2$ QCD with $N_t = 4$, and O(4) exponents. Quality similar to χ_4 .

	NJL model	Lattice	Summary
Summary			

- Negative specific heat exponent in QCD, as for liquid He or BES, leads to c_v with subtle interplay of singular and regular behaviour.
- ② The shape of the phase diagram of QCD makes it possible to relate QNS (in limit m → 0) to derivatives of free energy with respect to T. Jacobian measured by various lattice groups. More precision may be expected in future.
- Scaling analysis of QNS measured in $N_t = 4$ simulations presented. Data collapse shows that scaling regime may be reached for $m_{\pi}/m_{\rho} < 0.35$. Range of data collapse similar for χ_4 and χ_6 .
- HRG has no singular contribution, and so must miss QCD values of NLS.