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Abstract

This module introduces the idea of solving for the motion of more
than two bodies under the influence of their mutual gravitational in-
teraction using a computer. Through such techniques one can address
questions like, is our solar system stable?
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1 Introduction

“blind fate could never make all the Planets move one and
the same way in Orbs concentric, some inconsiderable irregulari-
ties excepted, which could have arisen from the mutual Actions of
Planets upon one another, and which will be apt to increase, until
this System wants a reformation” Newton, Opticks, Book III
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One of the great triumphs of physics is the Newton’s solution for the motion
of two objects which interact with each other through their mutual gravita-
tional force. This solution provides us, for example, with a qualitative and
quantitative understanding of the motion of the earth around the sun. The
solution also raises the question, how will the motion of earth get modified
when we take into account the force on it due to other objects in our Solar
System? Our first instinct would be that their effect should be very small
and negligible. After all the orbit of earth calculated on the basis of the
two-body solution matches very well with its real orbit, also the force due
to even the most massive of these objects, Jupiter, is extremely small (see
Exercise 2) Though these effects are small but are they negligible over the
life span of the Solar System? In fact Newton himself was keenly aware of
these problems as the quote in the beginning of the section shows.

Was Newton right? Do we need more than a blind fate for a stable
Solar System? In fact, is Solar System stable? How do we answer these
questions. One way would be to try and extend our two-body solution to
a three-body case. Unfortunately there does not exist, as far as we know,
analytical solution for a three-body problem. To appreciate the difficulty
involved, consider the motion of the Sun, the Earth and the Jupiter under
their mutual gravitational interaction. Now you can easily convince yourself
that the force acting on the Earth is no longer a central force and the motion
of earth cannot be reduced to an effectively one-dimensional problem as we
could in the case of the motion of a particle in the central force field (see
Exercise 1).

In the absence of an exact solution we can try to “correct” our two-body
solution by considering a “small” disturbance or perturbance due to a third
body. This approach too has its limitation, there is no proof that such
corrections to the elliptical orbits do not accumulate over the time periods
that we are interested in.

Fortunately there is in fact a universal tool that can help us answer these
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questions. The tool is the computer, and the idea is to use, as explained
in Appendix (2) and (3), a computer to solve the Newton’s equations of
motion for the bodies making up the solar system. The numerical solution
to these equations have lead to some surprising new insights into the question
of the long term fate of our solar system. Therefore our immediate task is to
understand how to solve equations of motion on a computer.

2 Solving Equations of Motion Using a Com-

puter

“In thinking and trying out ideas about “what is a quantum
field theory”, I found it very helpful to demand that a correctly
formulated field theory be soluble by computer, the same way an
ordinary differential equation can be solved on a computer, namely
with arbitrary accuracy in return for sufficient computing power”

Ken Wilson, Nobel Prize Acceptance Speech 1982.

To formulate a problem in a manner which a computer can solve requires
a clear, and often deep, understanding of the underlying laws. If we want
to solve the equations of motion on a computer we have to have a clear
understanding of Newton’s second law of motion. Consider first the simple
case of the motion in one dimension. Let us say that at some initial time,
which we take as zero, we know the position of the particle x(0) and its
velocity (dx

dt
)t=0 = v(0), and we would like to find it’s position after a very

short interval of time, ∆t, that is we want to know what is x(∆t)? We can
immediately give an approximate answer, using the definition of velocity,

x(∆t) = x(0) + v(0)∆t, (1)

we expect our answer to me more and more accurate as we consider smaller
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and smaller time interval ∆t. What is a short interval, more often than
not in a problem of interest there is an intrinsic time scale τ which can be
determined by simple dimension analysis, and what we require is ∆t � τ ,
this important point is further explored in Exercise- ??. Now let us say we
want to repeat this process and find the position of the particle at t = 2∆,

we immediately face a problem, to find x(2∆t) we need v(∆t). How do we
find that? Well, we can use the definition of the acceleration a to write

v(∆t) = v(0) + a(0)∆t, (2)

but what is the value a(0)? This is as far as kinematic can take us, to make
further progress we have to look at the environment of the particle to find out,
what is causing the acceleration, what are the forces acting on the particle,
this is the heart of the Newtonian program [R. P. Feynman]. It gives us
acceleration

a(t) =
1

m
F (t), (3)

where F (t) is the total force acting on the particle, and m is its mass. Now
we can find the v(∆t)

v(∆t) = v(0) +
1

m
F (0)∆t, (4)

and this in turn allows us to find x(2∆t) as

x(2∆t) = x(∆t) + v(∆t)∆t. (5)

Now one can continue with this process and solve for the motion of the
particle for any finite time interval, most importantly we can carry out this
procedure for any force.
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2.1 Simple Harmonic Oscillator on a Computer

Let us use our understanding of Newton’s Laws to solve equation of motion
on a computer. To illustrate this, we will consider the familiar problem of the
motion a particle in one dimension under the influence of a linear restoring
force. The equation of motion is

m
d2x

dt2
= −kx, (6)

where m is the mass of the particle and k is a constant (“spring” constant).
We would like to find the function x(t) which solves Eq.(6) and satisfies the
initial conditions

x(0) = x0(
dx

dt

)
t=0

= v0. (7)

Let us rewrite the equation of motion as an expression for acceleration

d2x

dt2
= −ω2

0x, (8)

where we have defined
ω2

0 =
k

m
. (9)

Dimension analysis tells us that ω0 has the dimension of inverse time, thus
there is an intrinsic time scale in the problem given by

T = ω−1
0 =

√
m

k
. (10)

(What is the physical significance of T?) With this in mind let us define a
new time variable

τ = ω0t,
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note by construction τ is dimensionless. Let us express velocity and acceler-
ation in terms of τ

dx

dτ
=
dx

dt

dt

dτ
=

1

ω0

dx

dt
,

similarly
d2x

dτ 2
=

1

ω2
0

d2x

dt2
.

Using these results we can write the equation of motion as

d2x

dτ 2
= −x(τ). (11)

This is the equation we would like to solve on the computer, with the corre-
sponding initial conditions as

x(τ = 0) = x(t = 0) = x0, (12)

and (
dx

dτ

)
τ=0

=
1

ω0

(
dx

dt

)
t=0

=
v0

ω0

≡ u0. (13)

What does it mean to solve this equation on a computer? Given the initial
position x0 and velocity u0 at time τ = 0, we would like to know what is the
value of x at any other arbitrary value of τ = T̄ .

2.2 Discretizing the time

From our discussion in the beginning of this section we know that to obtain
the value of x(τ = T̄ ) we have to successively obtain the value of x(τ),
starting from its value at τ = 0, for small time intervals ∆τ till we reach
τ = T̄ . Its important to note that because τ is a dimensionless variable,
small ∆τ means that ∆τ � 1. Thus, one reasonable choice is

∆τ = 0.01.
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Let us call x0 = x(0), x1 = x(∆τ), . . . , xN = x(N∆τ) = x(T̄ ) where

N =
T̄

∆τ
.

2.3 Leap Frog Method

We are now in a position to calculate x1 and u(∆τ)

x1 = x0 + u(0)∆τ

a(0) = −x0

u(∆τ) = u0 + a0∆τ,

where a refers to the acceleration. Repeating this procedure we can calculate
x2 and u(2∆τ)

x2 = x1 + u(∆τ)∆τ

a(∆τ) = −x1

u(2∆τ) = u(∆τ) + a(∆τ)∆τ.

Notice, to calculate x2 = x(2∆τ) we used the velocity u(∆τ) , but we know
the velocity is changing so it might be a better idea to use the velocity not at
the beginning of the interval but in the middle of the interval at τ = ∆τ

2
. Let

us define u1 = u(∆τ
2

) and then u2 = (∆τ
2

+ ∆τ) . Once we do that then we
observe that we can improve out calculation of acceleration too, in calculating
u2 from u1 we can use the value of acceleration evaluated at the middle of
the interval (∆τ

2
, 3

2
∆τ) which is just ∆τ ! Thus, with a simple reorganising

of our calculation we can improve our accuracy, effectively halving our time
interval ∆τ, without increasing number of step required to reach xN . This
reorganizing of our calculation is referred as the leap-frog method. To start
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Figure 1: Leap Frog Method

the leap-frog process we just have to do one additional calculation, which is

a0 = −x0,

u1 = u0 + a0
∆τ

2
.

The above procedure can be easily converted into a computer algorithm, as
you will do in project-1.

2.4 Round off Errors

The above example shows that solving of equation of motion can be re-
duced to a repetitive arithmetical operations which can be carried out on a
computer. But there is a catch, on a computer we cannot represent a real
number like π or 1

3
exactly, as a result real numbers have to be approximately

represented, or rounded off. This approximation results in the error in our
arithmetic operations. For example, a typical personal computer will not be
able to distinguish between 1 and 1 + ε where ε ∼ 10−16. Another source of
error, which you may have noticed is due to the small but finite value of the
time interval ∆τ. This error can of course be reduced by reducing the size
of ∆τ, but that would increase the number of intermediate steps required to
reach the value x(T̄ ), that means more arithmetical operations than before
and a corresponding increases in the round off error. The art of numerical
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solution is to find a way to minimize the error due to discritizing, without
overly increasing the roundoff errors. But, how can we quantify the error in
our solution, particularly in the cases where there are no known analytical
solutions? Here two important properties of Newton’s law help us.

2.5 Conservation of Energy

If the forces acting on the particle are conservative then we know the total
energy must be conserved. From the initial conditions we can calculate the
initial value of energy which must remain constant as we evolve our system.
The deviation from the initial value is than one measure of the error. In
project 1 you will explore this for a non-linear oscillator.

2.6 Time reversal

Another important property of the equation of motion for conservative forces
is the time reversal property. To understand what this property means,
consider a particle that starts with an initial position xi = x(0) and an
initial velocity ui = u(0) and let its position and velocity at latter time T̄
be xf = x(T̄ ) and uf = u(T̄ ), now if we reverse its velocity, so that its
velocity is −uf , and follow the motion, then after a time interval T̄ it will
come back to the starting position xi and will have velocity −ui. In other
words by reversing the velocity the particle retraces its trajectory, you will
prove this important property in Exercise - 4. Our numerical solution should
also satisfy this property, this we can check even if we do not know the exact
analytical solution of the problem.

3 Solving N-body Problem on a Computer

“An intelligence knowing, at a given instant of time, all forces
acting in nature, as well as the momentary positions of all things
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of which the universe consists, would be able to comprehend the
motions of the largest bodies of the world and those of the smallest
atoms in one single formula, provided it were sufficiently powerful
to subject all data to analysis. To it, nothing would be uncertain;
both future and past would be present before its eyes.”

Laplace

Having understood that Newton’s equation of motion are amenable to a
numerical solution, we are in a position to make a more realistic model of
our solar system which takes into account not only the interaction between a
planet and the sun but also includes the mutual gravitational interaction with
the rest of the objects that make up the solar system, which are the planets,
their moons, and the asteroids. The equations of motion that describe the
solar system are

ai(t) =
d2xi
dt2

= −G
N∑

j=1,j 6=i

mj

|xi − xj|3
(xi − xj), (14)

where xi is the position vector of the ith body with respect to suitably chosen
origin, mi is the mass of the body and G is the Gravitational constant. The
sum on the left hand side is over all the bodies except the ith body whose
acceleration we are evaluating. The label i takes value from 1 to N , where
N is the total number of bodies that form our solar system. Therefore we
have to solve 3N coupled differential equations to obtain the future or the
past of our solar system.

We can use exactly the same procedure for solving these equations as we
used for solving the equation of motion for a simple harmonic oscillator. The
key point of Newtonian dynamics is that it provides us with the acceleration,
knowing the initial conditions we can use this acceleration to find the position
of the various particles at latter time ∆t. From the point of view of solving
the equations, the only difference between the simple harmonic oscillator
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and the solar system is in the expression for the acceleration. In fact we can
immediately set up an iterative procedure for solving Eq.(14)

xi(t+ ∆t) = xi(t) + vi(t+
∆t

2
)∆t,

vi(t+
∆t

2
) = vi(t−

∆t

2
) + ai(t)∆t. (15)

The all important ai(t) is given by (14.)You will notice that this is nothing but
the leap-frog method (See Fig. 1). To start our iterative process we of course
need the initial conditions, the initial positions and the initial velocities of all
the bodies that make up our solar system: xi0 = xi(0) and vi0 = vi(0), and
for implementing the leap-frog method we need one additional calculation

vi(
∆t

2
) = vi0 + ai(0)

∆t

2
.

To find the position of all the bodies that make up the solar system at some
latter time T , which might be million years from now, we have to just iterate
Eq. (15) for T

∆t
number of times. Similarly, to find the position of the bodies

that make our present solar system million years in the past we just have to
reverse the initial velocities and then iterate Eq. (15). So indeed we seem to
have realised Laplace’s dream, with apparently both the past and future of
solar system can be determined by simple repetitive arithmetic operations.

4 Stability of a Dynamical System

We have an intuitive notion of stability of a static object. For example, we
consider a pencil lying horizontally on a table to be in a stable position,
a gentle tapping on the table does not flip the horizontal lying pencil into
a vertical position. We consider the same pencil to be unstable when it is
balanced vertically on its sharp tip, a slightest of disturbance will flip it to
a horizontal position. To answer the question raised in the introduction,
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that will the Earth continue to move in a closed orbit even after, say a half-
billion year, requires that we extend the notion of stability to the motion
of interacting bodies, like the sun and the planets that make up the solar
system.

4.1 Regular and Chaotic Systems

The systems which can be described using Newton’s equation of motion with
conservative forces, falls naturally into two categories, the regular and the
chaotic. To delineate these two kinds of system, consider a system consisting
of just one particles. The initial conditions for such a system will be given
by a pair of initial position and velocities, (x0,v0). Similarly at a latter time
the system can be described by giving its position and velocity (x(t),v(t)).
Now we change the initial conditions by an infinitesimally small amount so
that our new initial conditions are (x0 + δx0,v0 + δv0) , and correspondingly
the system will be described at latter time by (x(t) + δx(t),v(t) + δv(t)). If
the system is regular or integrable then we find

δx(t) ∝ t,

δv(t) ∝ t, (16)

which means that the new trajectory deviates from the original trajectory
slowly, linearly with time. On the other hand, if the system is chaotic then

δx(t) ∝ exp(
t

tl
),

δv(t) ∝ exp(
t

tl
),

where tl is called the Lyapunov time. For a regular system small change in
the initial condition leads to a “small” change in the final state, while for a
chaotic system, on a time scale greater than tl, a small change in the initial
conditions leads to a “large” change in the final state. Chaotic systems are
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systems that are very sensitive to the initial conditions, but at the same time
on the time scales less than tl a chaotic system behaves like a regular system.
This classification of dynamical system into regular and chaotic systems can
be extended to systems with more than one particle. If the deviation from
the initial condition grow only linearly we will call such a system regular,
and if the deviation grows exponentially then the system is chaotic.

In predicting the future behaviour of a system, like the solar system, we
need the initial conditions, the positions and the velocities of all the bodies
making up the solar system, but our knowledge of these initial conditions is
not prefect, there is some uncertainty in their values, and these small errors
in our initial knowledge will grow either linearly or exponentially depending
on whether the system is regular or chaotic. For chaotic system we will loose
all predictability for a time scale much greater than the Lyapunov time, no
matter how small our initial error be at t � tl they would have grown so
much that the trajectory predicted based on our initial conditions and the
actual trajectory could well be qualitatively different. Therefore in predicting
the future fate of the solar system it is important to know that whether the
solar system is a regular system or a chaotic system.

4.2 Central force: An example of a regular system

Perhaps the most famous and important example of a regular system is the
system consisting of two bodies interacting through a central force. Qualita-
tively this can be seen from the fact the radial motion of the corresponding
one body problem is completely described in terms of the effective potential
and the initial total energy. A small change in the initial position and initial
velocity would lead to a small change in the effective potential and a small
change in the total energy. In fact a hallmark of regular or integrable system
is the existence of sufficiently large number of conserved quantities, recall
from your solution of the central force problem the role that conservation of
energy and angular momentum played in integrating the equations of mo-
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tions. In Exercise (1) you will see that how the situation changes when you
have more than two interacting objects.

You can explore the idea of the stability of the orbits for central force
further in Ex.(3), but more in the spirit of this module you can quantitatively
explore the effect of small change in the initial conditions in a system of
two bodies interacting through gravitational force using a computer in the
project(3).

5 Is Solar System a Stable System?

“Speaking more precisely, given an arbitrary accuracy, no mat-
ter how precise, one can find a time long enough that we cannot
make predictions valid for that long a time.”

Feynman, Feynman Lectures in Physics Vol-1

We are in a position to try and answer the question that we posed in the
introduction, can the small effect of the gravitational interaction with the
rest of the bodies that make up the solar system modify the orbit of the
earth in a manner that eventually it is no longer a closed elliptical orbit? We
can make the question more sharper by writting the equation of motion for
Earth as

d2xE
dt2

= −G Msun

|xE − xsun|3
(xE − xsun) + δaE, (17)

where

δaE = −G
N∑
p=1

mp

|xE − xp|3
(xE − xp) (18)

and p labels all the other major bodies in the solar system. If we restrict
ourselves to only major bodies than p would run over Mercury, Venus, Mars,
Jupiter, Saturn, Uranus, Neptune, and Pluto and perhaps over other Pluto
like objects. If we neglect δaE in Eq.(17) then we know how to solve for the
motion of Earth exactly. As you have learned in this course the motion is
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elliptical and in this approximation the earth would go on orbiting the sun
till the sun exists in its present form. But what if we do not neglect δaE
then what will be the orbit of earth say five-million years from now? Will
it still be an elliptical orbit? If the effect of δaE is indeed negligible over
the life time of the solar system than it would be reasonable to say that the
effectively the orbit of earth is stable. We can ask similar question for all the
bodies in the solar system that exhibit bounded motion, and if their orbits
do not change qualitatively than again one can reasonably claim that the
solar system is effectively stable.

In the recent times a great progress has been made in answering these
questions. An essential component in answersing these question is the nu-
merical solution of N gravitating bodies that we discussed in (3) and it has
giving a surprisingly new insights [Renu Mahlotra, Carl Murry]. Perhaps,
it is worth re-emphasizing the fact that from the point of solving Newton’s
equation of motion on a computer inclusion of δaE introduced no new dif-
ficulty it just means that we have to do bit more airthematic to find the
acceleration! In projects (2) and (4) you will explore these techniques on
your own.

5.1 Future of the Solar System

Thanks to the heroic effort spent on solving the equations of motion that
describe our solar system, Eq. (14), using computers with a tight control on
round-off errors, we are beginning to find that the solar system is far from
a perfect example of a clock work. Some of the salient features that emerge
from these numerical solutions are

• The orbits of the planets that make up the solar system are chaotic
with characteristic Lyapunov time of 5-10 million years.

• Although the numerical simulations all indicate chaos in planetary or-
bits, in a qualitative sense the planetary orbits are stable – because the
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planets remain near their present orbits – over the lifetime of the sun.

• The presence of chaos implies that there is a finite limit to how accu-
rately the positions of the planets can be predicted over long times.

These result are not only important for understanding the long term fate of
our solar system, but they are also important as we search for other solar
systems in our galaxy and for Earth like planets. Investigations like this may
help us in answering the question, how unique are the Earth like planet in
our Universe. You can explore some of these issues on your own in project
(4).
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7 Exercises

1. Consider a simple model of Solar System that consists of the Sun, the
Earth, and the Jupiter. Is the the total force acting on the Earth a
central force? Is the angular momentum of the Earth conserved? Is
the energy of the Earth conserved? Is the total angular momentum of
the our model Solar system conserved?

2. Estimate the ratio of the force acting on the Earth due to Jupiter to
the force acting on the Earth due to the Sun.

3. A planer moves around the Sun in a circular orbit of radius R0. Con-
sider the situation in which the planet at a given instant, which we can
take as t = 0, gets a radial kick so that its radius changes from R0 to
R0 + δ0. Assume that δ0 � R0, and find the shape of the new orbit. Is
the new orbit closed? For the pourpose of this exercise assume that the
mass of the planet is much smaller than the mass of the Sun so that
you can disregard the motion of the Sun.[Hint: The problem becomes
simple once you realise that the circular orbits corresponds to the min-
imum of the effective potential and a small displacement about the
minimum results in a simple harmonic motion. See [Bikram Phukan]
for more interesting application of this approach.]

4. A particle moves in one dimension under the influence of a force which
does not explicitly depend on time. Show that if we follow the trajec-
tory of the particle, x(t), from t = 0 to t = T and then at time t = T

we reverse its velocity, then the particle will retrace its trajectory and
will arrive back its original position at time t = 2T.
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8 Projects

1. Numerical solution of a non-linear oscillator. In this project you
will investigate the behaviour of a non-linear oscillator. It’s equation
of motion is

m
d2x

dt2
= −kx− αx3.

(a) Define new unit of time and length so that the above equation of
motion takes the following form

d2y

dτ 2
= −y − y3.

(b) Solve this equation on a computer for various initial conditions.

(c) Explore the cases when y0 � 1 and when y0 � 1, where y0 is the
initial position. To be definite take initial velocity as zero.

(d) Write down an expression for the energy of the oscillator, and
check to what accuracy is the energy conserved in your numerical
solution for various choices of ∆τ .

2. Building the solar system on your computer-I: In this project you
will use [Visual Python] to model a solar system made up of only two
bodies, the sun and the earth. The way we will model will make it triv-
ial to add more bodies. Before you start this project you may want to
read the Appendix (A)go through a tutorial on visual python[Tutorial],
and read the section on vectors [Vectors]

• First write a Visual Python module that implements Eq. (14)
check your answer against B.1.

• Find the value of mass of the sun, mass of the earth, mean earth-
sun distance from any physics text book.
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• Now we are ready to build our solar system. Start a new Visual
Python file. We will start by defining two spherical objects in
visual python, they will graphically represent the sun and the
earth. These objects have in addition three more properties, mass
of the object, it’s position, and it’s velocity.

from visual import *

from nbodyAcc import *

#Solar system on a computer

#Constants that we will need

#define the value of G

G=6.673e-11

sun_mass = 2e30

earth_mass = 6e24

#for initial conditions

AU = 149.6e9 #mean earth sun orbital distance

earth_vel = 2*math.pi * AU/(365.25 *24. *60.*60.)

#setting for animations

scene.background = color.white

scene.autoscale = 0

scene.range = 2*AU

#objects making up our solar system

sun = sphere(pos= (0,0,0), velocity = vector(0,0,0), mass=sun_mass,

radius = 0.1*AU, color =color.yellow)

earth = sphere(pos= (AU, 0, 0), velocity = vector(0,earth_vel,0),

mass=earth_mass, radius=0.05*AU,

color =color.cyan)

#note the radius of sun and earth are NOT their true radius

#these are the radius of the spherical object

#that will be drawn on the computer screen.
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• Now make a list of these objects using the following code and add
two new attributes

bodies = [sun, earth]

for b in bodies:

b.acc = vector(0,0,0)

b.track=curve (color = b.color)

#the last statement allows us to plot the orbits

• Now we are ready to implement leap-frog method

#Time interval for integration - let us take 30minutes

dt = 30.0*60.0

#Initialize leap-frog by finding the velocities at t=dt/2

for b in bodies:

b.velocity = b.velocity + totalacc(b, bodies)*dt/2.0

#start leap-frog

while True:

rate(100) #not more than 100 time steps in a second

for b in bodies:

#update the positions

b.pos = b.pos + b.velocity*dt

b.track.append(pos=b.pos)

#update the velocities

b.velocity = b.velocity + totalacc(b, bodies)*dt

scene.center = earth.pos #view centered on earth!

• If all goes well you should have
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•

3. Stability of orbits in central force: Modify the above program
to simultaneously plot the orbit of the earth for two different initial
conditions which differ by a very small amount. Let ~r1 represent the
first orbit and ~r2 represent the second orbit, plot |~r1−~r2| as a function
of time.

4. Building the solar system on your computer-II: Now that we
have done the hard part, we can start playing with three body system.

• Find the mass, average distance, and the time period for Jupiter.

• Add Jupiter to the list of bodies in the previous program.

• Set the total linear momentum of the solar system to zero using,
so that we are in the centre of mass frame.

# set total momentum of system to zero

sum=vector(0,0,0)

for b in bodies:
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if (b!=sun):

sum=sum+b.mass*b.velocity

sun.velocity=-sum/sun.mass

• Study the effect of Jupiter on Earth’s orbit, to exaggerate this
effect you can increase the mass of “Jupiter” by an arbitrary factor
(this is the fun of using computer, we can do experiments!) Here
is what you would see if the mass of Jupiter was increased by a
factor of 100

•

• You can also study the phenomenon of resonance in the solar
system by introducing an hypothetical earth like planet, planetX
whose orbit lies between earth and Jupiter (for more on resonance
in solar system see [Carl Murry].) Find the distance from the
sun for which the planet will, in the absence of Jupiter and Earth,
would move in a circular orbit whose time period is in integral ratio
with the time period of Jupiter’s orbit. Now exaggerate the effect
of resonance by increasing the mass of Jupiter. You should be able
to see cases where the planetX is ejected from the solar system!
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(The project (2) and this project are modification of Simon Catter-
all computational physics course Lab, phy307, Syracuse University
http://www.phy.syr.edu/courses/PHY307/LABS/.)

A A Brief Introduction to Visual Python

What is Python?

It is a high level object oriented
Interpretive
programming language
which supports vector algebra.
Everything in Python is an object. Python objects can have attributes and
methods, which are subsidiary variables and functions.
z = 2+8J
z.real # An attribute of complex numbers.
z.imag # Another attribute.
z.conjugate() # A method of complex numbers.

What is Visual Python?

Extension of python that allows for visual representation of three dimen-
sional geometrical objects.

>>> from visual import *
>>> sphere() # draw a sphere

Use of Visual Python in Physics: SHO

from visual import *
ball = sphere (pos = (10,0,0), radius = 0.5, color = color.red)
t = 0
dt = 0.01
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ball.velocity = vector(0,0,0)
tmax = 10
while t<tmax:

rate(100)
t = t + dt
ball.pos = ball.pos + ball.velocity * dt
accel = - ball.x - 0.01 * ball.velocity.x
ball.velocity.x = ball.velocity.x + accel * dt

Visual Python in Physics: A Tutorial

Setting up the charges on the screen

from visual import *
#set the screens
scene.width=1200
scene.height= 1000
scene.title=’Motion of an electron ...’
#define electric charge
Q = 1.6e-19
#define two static charges
q1= sphere(pos=(0.0,0.0,0.0), radius = 0.1e-10,

color = color.red, charge = Q)
q2= sphere(pos=(1.0e-10,0.0,0.0), radius = 0.1e-10,

color = color.red, charge = Q)
#define electron
electron = sphere(pos=(0.5e-10,1.0e-10, 0.0), radius =

0.05e-10,
color= color.blue, charge = -Q, mass = 9.0e-31,
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velocity = vector(1.8e6,0.0,0.0),
trail=curve(color=color.yellow))

#define array of two charges
charges=[q1, q2]
#k = 1

4πε0

k = 9.0e9

Visual Python in Physics: A Tutorial

Showing the motion of the charges on the screen

#time interval for integrating
dt = 0.5e-18
#start an infinite loop
while 1:

rate(50)
#calculate the new position of the electron
electron.pos = electron.pos + electron.velocity*dt
#create a trail
electron.trail.append(pos=electron.pos)
#define the electric field vector
E=vector(0.0,0.0,0.0)
#calculate the electric field
for ch in charges:

#position vector of the electron
r = electron.pos - ch.pos
E = E + k*ch.charge/mag(r)**2 * norm(r)

#calculate the force on the electron
F = E*electron.charge
#calculate the accelaration
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a = F/electron.mass
#calculate the new velocity
electron.velocity = electron.velocity + a*dt

B Building a Solar System on Your Computer:

B.1 Calculating acceleration in N-body problem

This module implements Eq. (14) in visual python

##============================================================

##nbodyAcc

##============================================================

from visual import *

#define the value of G

G=6.673e-11

## Acceleration of object a due to object b

def acc(a, b):

rel_pos = b.pos - a.pos

return G*b.mass * norm(rel_pos)/rel_pos.mag2

## Acceleration of a due to all the

##objects b interacting with it

def totalacc (a, objlist):

sum_acc = vector (0,0,0)

for b in objlist:

if (a!=b):

sum_acc = sum_acc + acc(a, b)

return sum_acc
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B.2 N-body Problem in Visual Python

from visual import *

from nbodyAcc import *

#Solar system on a computer

#Constants that we will need

#define the value of G

G=6.673e-11

sun_mass = 2e30

earth_mass = 6e24

boost=1.0 #allow for boosting Jupiter’s mass

jupiter_mass=boost*1.9e27

#for initial conditions

AU = 149.6e9 #mean earth sun orbital distance

earth_vel = 2*math.pi * AU/(365.25 *24. *60.*60.)

jupiter_vel=2*math.pi*AU*5.2/(11.86*365.25*24.*60.*60)

#setting for animations

scene.background = color.white

scene.autoscale = 0

scene.range = 10*AU

#objects making up our solar system

sun = sphere(pos= (0,0,0), velocity = vector(0,0,0),

mass=sun_mass, radius = 0.1*AU, color =color.yellow)

earth = sphere(pos= (AU, 0, 0), velocity = vector(0,earth_vel,0),

mass=earth_mass, radius=0.05*AU, color =color.cyan)

jupiter=sphere(pos=(5.2*AU,0,0),velocity=vector(0,jupiter_vel,0),

mass=jupiter_mass, radius=0.15*AU, color=color.red)

#note the radius of sun, jupiter and earth are NOT

# their true radius these are the radius of the spherical object

#that will be draw on the computer screen.

#Create a list of objects making up our solar system
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#and add attributes for their acceleration and orbits

bodies = [sun, earth, jupiter]

for b in bodies:

b.acc = vector(0,0,0)

b.track=curve (color = b.color)

# set total momentum of system to zero

sum=vector(0,0,0)

for b in bodies:

if (b!=sun):

sum=sum+b.mass*b.velocity

sun.velocity=-sum/sun.mass

# dt corresponds to 3000 mins here

dt=30.*60.*100

#Initialize leap-frog by finding the velocities at t=dt/2

for b in bodies:

b.velocity = b.velocity + totalacc(b, bodies)*dt/2.0

#start leap-frog

while True:

rate(100) #not more than 100 time steps in a second

for b in bodies:

#update the positions

b.pos = b.pos + b.velocity*dt

b.track.append(pos=b.pos)

#update the velocities

b.velocity = b.velocity + totalacc(b, bodies)*dt

scene.center = sun.pos #view centered on sun
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C Appendix: Solutions of the Selected Exer-

cises

• Ex-2: To estimate this ratio, we will assume that both the Earth and
the Jupiter are moving in a circular orbit, that is we are disregarding
the small eccentricities of their orbits. Then the ratio is

FEJ
FES

≈ MJ

MS

r2
ES

r2
EJ

,

where, MJ and MS are the masses of the Jupiter and the Sun respec-
tively, while rES is the average distance between the Earth and the Sun,
similarly rEJ is the average distance between the Earth and the Jupiter.
Using the following values: MJ = 1.9 × 1027kg, MS = 2.0 × 1030kg,
rES = 1AU and rEJ = 4.2AU , gives us

FEJ
FES

≈ 1

103

1

4.22
≈ 6× 10−5.

• Ex3: The radial motion is determined by the effective potential

Ueff (r) =
−GM
r

+
l2

2r2
, (19)

where M is the mass of the sun and

l =
L

m
, (20)

where L is the conserved angular momentum of the planet and m is its
mass. The radial equation of motion is

r̈ = −dUeff
dr

. (21)
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The angular motion is of-course given by

φ̇ =
l

r2
. (22)

The circular motion corresponds to the minimum of the the effective
potential (

dUeff
dr

)
R0

= 0 =
GM

R2
0

− l2

R3
0

,

which givers the radius of the circular orbit as

R0 =
l2

GM
. (23)

To find the radial motion of the perturbed orbit, r(t) = R0 + δ(t), we
need Ueff (R0 + δ), since δ � R0, we do a Taylor expansion about R0to
obtain

Ueff (R0 + δ) = Ueff (R0) +
1

2

(
d2Ueff
dr2

)
R0

δ2 + · · · ,

where we have used the fact that Ueff (R0) is the minimum and therefore
the first derivative of the effective potential vanishes at R0. Define

ω2 =

(
d2Ueff
dr2

)
R0

=
3l2

R4
0

− 2GM

R3
0

,

using Eq.(23) we get

ω2 =
GM

R3
0

, (24)

and the equation for the radial motion is

δ̈ = −dUeff
dδ

= −ω2δ.

This is nothing but the equation for simple harmonic motion and the
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solution for our case is
δ(t) = δ0 cosωt

and the new radial motion is

r(t) = R0 + δ0 cosωt.

Note that the ω is same as the angular frequency φ̇ of the unperturbed
circular motion, so after one complete radial oscillation the particle is
at φ = φ+ 2π and therefore the perturbed orbit is closed.

• Ex 4: Consider the trajectory

x̄(t) = x(2T − t) = x(τ),

where τ = 2T − t, for the time interval [T, 2T ]. One can immediately
verify that if x(t) is the solution of the equation of motion then so is
x(τ), that is,

m
d2x(τ)

dτ 2
= F.

x(τ) is nothing but the original trajectory which has been reversed, at
t = 2T , τ = 0 and the particle returns to its starting point, but the
velocity is reversed(

dx̄

dt

)
t=2T

=

(
dx

dτ

)
τ=0

dτ

dt
= −

(
dx

dt

)
t=0

.

D Movies

D.1 Sun-Earth

The movie (Fig.2) was made using the numerical solution of the earth sun
system as described in the project 2.
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Figure 2: Movie of Earth Sun System

D.2 Sun-Earth and a Heavy Jupiter

The movie (Fig.3) is an example of a three body system and was made using
the program developed in the project 4. Here we consider the motion of the
Sun, the Earth and an imaginary planet which is at same distance as the
Jupiter from the Sun but is hundred time massive than the Jupiter.
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Figure 3: Movie of the Sun, Earth and a planet hundred times massive than
the Jupiter
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