Teaching Computational Physics in Jadavpur University

Jadavpur University is located on the south fringe of Calcutta.

Students come from the city (30 – 60 %) as well as from suburban and rural areas (40 – 70 %).

Physics teaching:

Undergraduate honours level: 40 – 45
Undergraduate subsidiary courses: ~140
Undergraduate Engineering: ~1200

Postgraduate (day): ~35
Postgraduate (evening, school teachers etc): ~35
Undergraduate teaching includes:

2 semester course in computer applications → 2nd Year B.Sc.

Till 1999 – Introduction to Fortran
From 2000 – Introduction to C
Undergraduate teaching includes:

2 semester course in computer applications → 2nd Year B.Sc.

Till 1999 – Introduction to Fortran
From 2000 – Introduction to C

Advantage: Basic course, compulsory to all science students, interdepartmental initiative
Undergraduate teaching includes:

2 semester course in computer applications → 2nd Year B.Sc.

Till 1999 – Introduction to \textbf{Fortran}
From 2000 – Introduction to \textbf{C}

Advantage: Basic course, compulsory to all science students, interdepartmental initiative

\textbf{Disadvantage}: No Major-subject specific tailoring, Not enough application in the major (honours) subject
Postgraduate teaching includes:

2 semester course in Fortran Programming and Numerical Methods → 1st Year (since 1988)

Errors in numerical computation

Solutions of equations: Bisection, Secant, Newton-Raphson Method.

Finite Differences

Newton and Lagrange interpolation

Euler method, Runge-Kutta method

Method of least squares

Matrix eigenvalues

Numerical integration: Trapezoidal and Simpson's method
Postgraduate teaching includes:

2 semester course: **Computer Applications in Physics** → 2\(^{nd}\) Year M.Sc. (since 1995, UGC special assistance)
Postgraduate teaching includes:

2 semester course: **Computer Applications in Physics** → 2nd Year M.Sc. (since 1995, UGC special assistance)

1. Review of Fortran
2. Introduction to Mathematica
Postgraduate teaching includes:

2 semester course: **Computer Applications in Physics** → 2nd Year M.Sc. (since 1995, UGC special assistance)

1. Review of Fortran
2. Introduction to Mathematica
3. Classical Mechanics
Postgraduate teaching includes:

2 semester course: **Computer Applications in Physics** → 2nd Year M.Sc. (since 1995, UGC special assistance)

1. Review of Fortran

2. Introduction to Mathematica

3. **Classical Mechanics** – Motion of point particle, Orbits in central force field, solution of Hamilton's equation, non-linear dynamics, Bifurcations, Duffing oscillator, van-der Pol oscillator, Lorenz equation, Chaos.
Postgraduate teaching includes:

2 semester course: **Computer Applications in Physics** → 2nd Year M.Sc. (since 1995, UGC special assistance)

1. Review of Fortran
2. Introduction to Mathematica
4. Quantum Mechanics
Postgraduate teaching includes:

2 semester course: Computer Applications in Physics → 2nd Year M.Sc. (since 1995, UGC special assistance)

1. Review of Fortran
2. Introduction to Mathematica
4. Quantum Mechanics – Time evolution of wave packet, Bound state energies and wave function, scattering of wave packet at potential step.
Postgraduate teaching includes:

2 semester course: **Computer Applications in Physics** (since 1995, UGC special assistance) → 2nd Year M.Sc.

5 **Statistical Physics**
Postgraduate teaching includes:

2 semester course: **Computer Applications in Physics** → 2nd Year M.Sc. (since 1995, UGC special assistance)

5 **Statistical Physics** – Random numbers and variables, Monte Carlo simulation, random walks, approach to equilibrium, Metropolis algorithm, Ising model
Impact of the course on students – some instances
Impact of the course on students – some instances

Feels the “Comput'l Phys” course as one of the best he had at JU

Present: post doc at T.U., Dresden
Impact of the course on students – some instances

Feels the “Comput'l Phys” course as one of the best he had at JU
Present : post doc at T.U., Dresden

Rupsi Chandra – B.Sc. (other univ) and M.Sc. (JU) – 2003
Comput'l Phys Proj: Chaos in Dynamical Systems
Ph.D. Univ of Delaware, 2008.
Present : post doc at Naval Research Lab
Impact of the course on students – some instances

 Feels the “Comput'l Phys” course as one of the best he had at JU
 Present : post doc at T.U., Dresden

Rupsi Chandra – B.Sc. (other univ) and M.Sc. (JU) – 2003
 Comput'l Phys Proj: Chaos in Dynamical Systems
 Ph.D. Univ of Delaware, 2008.
 Present : post doc at Naval Research Lab

 Comput'l Phys Proj : Surface Growth – Ballistic-Random Deposition Process
 Present : Research fellow at Jadavpur University
Impact of the course on students – social relevance
Impact of the course on students – social relevance

Maitreyi Banerjee – B.Sc. (CU) – 1987
discontinued study for raising family,
M.Sc. (JU, evening) – 2004
Presently with Lucent Technologies.
Impact of the course on students – social relevance

Maitreyi Banerjee – B.Sc. (CU) – 1987
 discontinued study for raising family,
 M.Sc. (JU, evening) – 2004
 Presently with Lucent Technologies.

• **While studying central force orbits could not find any orbit agreeing with some shown in Goldstein.**
Impact of the course on students – social relevance

Maitreyi Banerjee – B.Sc. (CU) – 1987
 discontinued study for raising family,
 M.Sc. (JU, evening) – 2004
 Presently with Lucent Technologies.

• While studying central force orbits could not find any orbit agreeing with some shown in Goldstein.

• *This computation inspired us to show analytically that some of the orbits presented in Goldstein are impossible.*
Impact of the course on students – social relevance

Maitreyi Banerjee – B.Sc. (CU) – 1987
 discontinued study for raising family,
 M.Sc. (JU, evening) – 2004
 Presently with Lucent Technologies.

• While studying central force orbits could not find any orbit agreeing with some shown in Goldstein.

• This computation inspired us to show analytically that some of the orbits presented in Goldstein are impossible.

• Some analytical results were also found for general power law forces.

Impact of the course on students – social relevance

Impact of the course on students – social relevance

Taught in a school
M.Sc. (JU, evening), 2004
Presently Headmaster in a Calcutta school.

- Introduced to computer use in M.Sc.
Impact of the course on students – social relevance

Taught in a school
M.Sc. (JU, evening), 2004
Presently Headmaster in a Calcutta school.

- Introduced to computer use in M.Sc.
- Implemented computer laboratory (12 computers) in school with assistance from alumni and NGO.
Impact of the course on students – social relevance

Taught in a school
M.Sc. (JU, evening), 2004
Presently Headmaster in a Calcutta school.

- Introduced to computer use in M.Sc.
- Implemented computer laboratory (12 computers) in school with assistance from alumni and NGO.
- Introduced a Computer Applications course for school students. It is an optional course at secondary level in WB.
- Students can also play with applets as an aid to their school books.
Limitations:

Our courses teach standard methods without handling some of the tricky (critical) questions from students.
Limitations:

Our courses teach standard methods without handling some of the tricky (critical) questions from students.

1. Why does the same program give different results when run on different machines?
Limitations:

Our courses teach standard methods without handling some of the tricky (critical) questions from students.

1. Why does the same program give different results when run on different machines?
2. How much time will my program take?
Limitations:

Our courses teach standard methods without handling some of the tricky (critical) questions from students.

1. Why does the same program give different results when run on different machines?
2. How much time will my program take?
3. How do I calculate the factorial of a large number?
Limitations:

Our courses teach standard methods without handling some of the tricky (critical) questions from students.

1. Why does the same program give different results when run on different machines?
2. How much time will my program take?
3. How do I calculate the factorial of a large number?
4. After a curve fitting / interpolation, how do I estimate the error inherent (error bars)?
Limitations:

Our courses teach standard methods without handling some of the tricky (critical) questions from students.

1. Why does the same program give different results when run on different machines?
2. How much time will my program take?
3. How do I calculate the factorial of a large number?
4. After a curve fitting / interpolation, how do I estimate the error inherent (error bars)?
5. How good are my random numbers? (Chi sq. test etc.)
These limitations - **not unique** - to computer applications:
These limitations - not unique to computer applications:

1. Quantum Mech –
 i) Do we really need *Hilbert spaces*? Is linear space enough?
These limitations - not unique to computer applications :

1. Quantum Mech –
 i) Do we really need Hilbert spaces? Is linear space enough?
 ii) Do we need Hermitian operators just to ensure real eigenvalues, or are there deeper reasons?
These limitations - not unique to computer applications:

1. Quantum Mech –
 i) Do we really need Hilbert spaces? Is linear space enough?
 ii) Do we need Hermitian operators just to ensure real eigenvalues, or are there deeper reasons?
 iii) Is bra vector just an adjoint (transpose conjugate) of ket?

2. Statistical Mechanics –
 i) Product of an increasing and a decreasing function has a maximum. Is that always true?
These limitations - not unique to computer applications:

1. Quantum Mech –
 i) Do we really need Hilbert spaces? Is linear space enough?
 ii) Do we need Hermitian operators just to ensure real eigenvalues, or are there deeper reasons?
 iii) Is bra vector just an adjoint (transpose conjugate) of ket?

2. Statistical Mechanics –
 i) Product of an increasing and a decreasing function has a maximum. Is that always true?

3. Classical mechanics –
 i) How do we define virtual displacement?
 Is principle of zero virtual work a definition (it is not), or an additional condition on the system of virtual displacements?
What do I expect from a meeting like the present one:

- Exchange experience and ideas (may continue through email)
- Discuss common core curricula
- Evolve realistic and effective method of feedback from students
- Hold discussion sessions for continuous improvement in future
Learning physics is sometimes like traversing a rough road through beautiful places.
Learning physics is sometimes like traversing a rough road through beautiful places.

There will always be twists and turns, but a paved road can lead to more exotic beauty of nature.