

Results from STAR

Subhasis Chattopadhyay Variable energy Cyclotron centre 1/AF, salt lake Kolkata 700 064

For the STAR Collaboration

The STAR Detector

Large acceptance: 2p coverage at mid-rapidity

Measurements

- AuAu: 200, 62.5, 20 GeV
- CuCu: 200, 62.5 GeV
- Pp: 200 GeV
- dAu: 200 GeV

Global Characteristics: multiplicity, Et

Rapidity and azimuthal distribution for charge and neutral particles for identified particles: pion,K,lambda,cascade,omega,electron Charm, resonances. Coverage:

Eta ranges +-1, 2.3 to 3.8,

Full azimuth

Pt from 50 MeV/c to 15 GeV/c

WHITE PAPER

strange baryon spectra

- Global observables
- Rapidity, azimuthal and pT distributions of (non) identified particles Radial, elliptic, directed flow

Rapidity and azimuthal correlations for (non)identified particles

Particle ratios

Fluctuations (number, pT, ratio..) and correlations

Heavy flavor

It is a partial journey

QGP = a (locally) thermally equilibrated state of matter in which quarks and gluons are deconfined from hadrons, so that color degrees of freedom become manifest over nuclear, rather than merely nucleonic,

Not required:

non-interacting quarks and gluons

- 1st- or 2nd-order phase transition
- evidence of chiral symmetry restoration

Medium and properties

Tool: Elliptic Flow Understanding: Thermalization? EOS? Time scale?

The Strongest Evidence For (Locally)Thermalized State of Matter and EOS with a soft point : Observed Elliptic Flow vs the Predictions of Hydro

- Non-flow effects large at high p_T and for lighter systems.
- multiple methods to remove non-flow: 4-particle cumulants, subtraction of pp.
- Significantly smaller v_2 in Cu+Cu than in Au+Au.

TASoft Sector: Evidence for Thermalization and EOS with Soft Point?

What do the v_2 and Hydro results tell us ?

- Systematic m-dependence of $v_2(p_T)$ suggests common transverse vel. Field
- m_T spectra and v_2 systematics for mid-central collisions at low p_T are well (~20-30% level) described by hydro expansion of ideal relativistic fluid
- Hydro success suggests early thermalization, very short mean free path and high initial energy density (e > 10 GeV/fm³)

Best agreement with v_2 and spectra for τ_{therm} < 1 fm/c and soft (mixed-phase-dominated) EOS ~ consistent with LQCD expectations for QGP \rightarrow hadron

What do we need to understand better ?

Real sensitivity of the Hydro predictions to the EOS and the Freeze-out Treatment

E-by-E Fluctuations

- Net Charge Fluctuations
 - Prediction by Jeon & Koch, PRL83 (99) 5435, + others...
 - Net charge fluctuations *dramatically reduced* in a QGP compared to a hadron or resonance gas.
 - Published STAR results at 130 GeV: C. Adler, et al., Phys. Rev. C68, 044905 (2003).
- K/Pi fluctuation:

reflects strangeness fluctuation

$$R = \frac{N_{+}}{N_{-}} \quad D = \langle N_{ch} \rangle \langle \delta R^{2} \rangle = 4 \frac{\langle \delta Q^{2} \rangle}{\langle N_{CH} \rangle} = 4 \varpi_{Q}$$

- Momentum Fluctuations
 - Predictions by M. Stephanov *et al* PRL81 (98) 4816;
 S. Mrowczynski, PLB314 (93) 118.
 - Large Transverse Momentum Fluctuations
 - Sensitive to 1st order phase transition QGP Droplets.
 - Sensitive to 2nd order phase transition Near critical point.

Model	D	v _{+-,dyn}
Poisson, Hadron Gas	4	0
Resonance Gas (Koch et al)	2.8	- 1.2/n _{ch}
Quark Coalescence (Bialas)	3.33	- 0.7/n _{ch}
QGP (Koch et al)	0.75	- 3.25/n _{ch}
Lattice	1	-3/n _{ch}

Study beam energy & collision centrality dependence

Net Charge & K $/\pi$ **Fluctuations**

Instead of measuring the variance of a yield ratio, $r_{12} = \frac{n_1}{n_2} \rightarrow \frac{\langle (\Delta r_{12})^2 \rangle}{\langle r_{12} \rangle^2} \approx \frac{\langle (\Delta n_1)^2 \rangle}{\langle n_1 \rangle^2} + \frac{\langle (\Delta n_2)^2 \rangle}{\langle n_2 \rangle^2} - 2 \frac{\langle \Delta n_1 \Delta n_2 \rangle}{\langle n_1 \rangle \langle n_2 \rangle}$ Study the "dynamical fluctuations": $v_{12,dyn} = \left\langle \left(\frac{n_1}{\langle n_1 \rangle} - \frac{n_2}{\langle n_2 \rangle} \right)^2 \right\rangle - \frac{1}{\langle n_1 \rangle} - \frac{1}{\langle n_2 \rangle} = \tilde{R}_{11} + \tilde{R}_{22} - 2\tilde{R}_{12}$ Side Note: $D \equiv \langle n_1 + n_2 \rangle \langle (\Delta r_{12})^2 \rangle$ $\frac{D}{4} \approx 1 + \frac{(\tilde{R}_{++} + \tilde{R}_{--} - 2\tilde{R}_{+-})\langle n_+ + n_- \rangle}{4}$

p_t Fluctuations

$$\begin{split} \left\langle \Delta p_{t,1} \Delta p_{t,2} \right\rangle &= \frac{1}{N_{event}} \sum_{k=1}^{N_{event}} \frac{C_k}{N_k \left(N_k - 1\right)} \quad C_k = \sum_{i=1}^{N_k} \sum_{j=1, i \neq j}^{N_k} \left(p_{t,i} - \left\langle \left\langle p_i \right\rangle \right\rangle\right) \left(p_{t,j} - \left\langle \left\langle p_i \right\rangle \right\rangle\right) \\ & \text{and } \left\langle \left\langle p_i \right\rangle \right\rangle = \left(\sum_{k=1}^{N_{event}} \left\langle p_i \right\rangle_k\right) / N_{event} \quad \text{and } \left\langle p_t \right\rangle_k = \left(\sum_{i=1}^{N_k} p_{t,i} \right) / N_k \end{split}$$

1/N_{part} Scaling?

Finite Dynamical k vs π Fluctuations

event-by-event fluctuations

soft-soft correlations

130 GeV Au+Au: STAR, nucl-ex/0411003. $cos(f_D)$, $cos(2P_D)$ -subtracted correlations.

Jet Quenching via Spectra azimuthal anisotropy Correlation

Partonic energy loss in dense matter

Bjorken, Baier, Dokshitzer, Mueller, Pegne, Schiff, Gyulassy, Levai, Vitev, Zhakarov, Wang, Wang, Salgado, Wiedemann,...

Gluon bremsstrahlung

Multiple soft interactions:

Opacity
expansion:
$$\Delta E = \pi C_A C_a \alpha_S^3 \int d\tau \rho_{ghue}(\tau, r(\tau)) \tau Log\left(\frac{2E_{jet}}{\mu^2 L}\right)$$

Strong dependence of energy loss on gluon density ρ_{glue} : measure DE \Rightarrow color charge density at early hot, dense phase

Inclusive Suppression

Binary collision scaling p+p reference

Suppression an established probe of the density of the medium

TAR

High p_T yields in central Au+Au are suppressed

The Limitations of R_{AA}

Surface bias leads effectively to saturation of R_{AA} with density

Challenge: Increase sensitivity to the density of the medium

Azimuthal distributions in Au+Au

Path Length Dependence

di-hadron, 20-60% Central

Soft-Hard Correlations: Partial Approach Toward Thermalization?

Assoc. particles: Au+Au results: GeV/c Open symbols $\Leftrightarrow 6 < p_T^{trig} < 0.15 < p_T < 4$ GeV/c Away side not jet-like! Incorr/Au+Au, the balancing hadrons are greater in number, softer in p_T , and distributed ~statistically [~ $\cos(\Delta \phi)$] in angle, relative to pp or peripheral Au+Au.

 \Rightarrow away-side products seem to approach equilibration with bulk medium traversed, making thermalization of the bulk itself quite plausible.

hard-soft angular correlations

 Novel dip at p in away <p_T> for p_T^{trig}<6 GeV/c. Associated hadrons at p appear more equilibrated.

correlation functions

conical flow? 3-particle correlation

STAR

Mesons and baryons behave differently

Emergence of dijets

Increase associated p_T threshold also

For the first time: clear jet-like peaks seen on near and away side in central Au+Au collisions

STAR Observation 1 on away-side peaks: Widths

Changing the probe: towards g-jet in Au+Au

- Direct g does not couple to medium or fragment into jets
 - remove from trigger both surface bias, fragmentation uncertainty in Q²
- Correlations triggered on g: clear near and away-side peaks
- Strong contamination remains from p⁰ decay daughters
 - Work in progress to separate out direct g

Heavy quark production at RHIC

STAR Detector and Data Sample

Electrons in STAR:

- TPC: tracking, PID |h|<1.3 f=2p</p>
- BEMC (tower, SMD): PID 0<h<1 f=2p</p>
- TOF patch

HighTower trigger:

- Only events with high tower
 E_T>3 GeV/c²
- Enhancement of high \textbf{p}_{T}

Processed: 6 7M events

- Run2003/2004 min. bias. high tower trigger 10% central
- 6.7M events with half field
- 2.6M events with full field (45% of all)
- 4.2M events (15% of all)

Electron ID in STAR – EMC

1. TPC: dE/dx for p > 1.5 GeV/c

- Only primary tracks (reduces effective radiation length)
- Electrons can be discriminated well from hadrons up to 8 GeV/c
- Allows to determine the remaining hadron contamination after EMC

2. EMC:

- a) Tower E \Rightarrow p/E
- b) Shower Max Detector (SMD)
 - Hadrons/Electron shower develop different shape
 - Use # hits cuts

85-90% purity of electrons

 $(p_T dependent)$

Heavier: Charm production

• First direct measurement of open charm in Au+Au Collisions

Total charm cross-section in Au+Au: N_{binary} scaling from

Expectation: Radiative Energy Loss of Heavy Quarks

STAR

- Coupling of heavy quarks to the medium reduced due to mass
- Expectation: even for high medium density, higher R_{AA} for

12/single electrons from heavy flavor than for light hadrons 42

Heavy Flavor R_{AA}

- R_{AA} to 10 GeV/c in non-photonic electrons
- Suppression is approximately the same as for hadrons
- B contribution? Challenge for radiative picture?

forward physics

Forward rapidity at RHIC probes CGC. CGC will be even more important at LHC (and at mid-rapidity).

Summary

- New, precision data from STAR.
- Jet-medium interaction:
 - strong indication of thermalization processes
 - distinctive features of conical flow not seen
 - Dijet reappears at larger pT
 - Heavy flavor shows similar quenching as of light ones
- Elliptic flow and spectra data show:
 - early thermalization
 - partonic collectivity
 - relevance of constituent quark DOF
 - Limiting fragmentations have been investigated

Future Outlook

- Rich physics still on tape: Half of year 4 Au+Au, 80% of year 5 Cu+Cu statistics still to be processed
- Future runs:
 - Full EMC barrel installed and ready for use for triggered data over 2 units in \boldsymbol{h}
 - Full barrel TOF upgrade for identified correlations, resonances, electrons
 - DAQ1000 upgrade of DAQ to remove deadtime, increase dataset size
 - Forward Meson Spectrometer upgrade for definitive measurements on CGC
 - Heavy Flavor Tracker for definitive measurements of open charm

Collaboration

U.S. Labs: Argonne, Lawrence Berkeley, and **Brookhaven National Labs U.S. Universities:** UC Berkeley, UC Davis, UCLA Caltech, Carnegie Mellon, Creighton, Indiana, Kent State, MIT, MSU, CCNY, Ohio State, Penn State, Purdue, Rice, Texas A&M, UT Austin, Washington, Wayne State, Valparaiso, Yale Brazil: Universidade de Sao Paolo China: IHEP - Beijing, IPP - Wuhan, USTC, Tsinghua, SINAP, IMP Lanzhou **Croatia: Zagreb University** Czech Republic: **Nuclear Physics Institute** England: **University of Birmingham**

France:

Institut de Recherches Subatomiques Strasbourg, SUBATECH - Nantes

Germany:

Max Planck Institute – Munich **University of Frankfurt** India: Bhubaneswar, Jammu, IIT-Mumbai, Panjab, Rajasthan, VECC Netherlands: **NIKHEF/Utrecht Poland:** Warsaw University of Technology Russia: MEPHI - Moscow, LPP/LHE JINR -Dubna, IHEP - Protvino South Korea: **Pusan National University** Switzerland: University of Bern