High Energy Photons from Relativistic Heavy Ion Collisions

Dinesh Kumar Srivastava

Variable Energy Cyclotron Centre Kolkata

- Motivation
- The PCM: Fundamentals & Implementation
- Photon production in the PCM
- Medium Effects: Jet-Photon Conversion (FMS Photons)

Part #1: Photon Production in the PCM

- Light from cascading partons in relativistic heavy-ion collisions
- S.A. Bass, B. Mueller and D.K. Srivastava, Phys. Rev. Lett. 90 (2003) 082301
- •Intensity interferometry of direct photons in Au+Au collisions
- S.A. Bass, B. Mueller and D.K. Srivastava, Phys. Rev. Lett. **93** (2004) 162301
- Dynamics of the LPM effect in Au+Au Collisions at 200 AGeV
- T. Renk, S.A. Bass and D.K. Srivastava, nucl-th/0505059

Basic Principles of the PCM

Goal: provide a microscopic space-time description of relativistic heavy-ion collisions based on perturbative QCD

- degrees of freedom: quarks and gluons
- classical trajectories in phase space (with relativistic kinematics)
- initial state constructed from experimentally measured nucleon structure functions and elastic form factors

• an interaction takes place if at the time of closest approach d_{min} of two partons $\int_{1}^{1} \int_{1}^{1} \int_{1$

• system evolves through a sequence of binary $(2\rightarrow 2)$ elastic and inelastic scatterings of partons and initial and final state radiations within a leading-logarithmic approximation $(2\rightarrow N)$

- binary cross sections are calculated in leading order pQCD with either a momentum cut-off or Debye screening to regularize IR behavior
- guiding scales: initialization scale Q_0 , p_T cut-off p_0 / Debye-mass μ_D

Parton-Parton Scattering Cross-Sections

g g → g g	q q' → q q'	
q g→ q g	q qbar→ q' qbar'	
g g → q qbar	q g →q γ	
q q → q q	q qbar → g γ	
q qbar → q qbar	q qbar → γ γ	
q qbar → g g		

- a common factor of $\pi \alpha_s^2(Q^2)/s^2$ etc.
- further decomposition according to color flow

Initial and final state radiation

Probability for a branching is given in terms of the Sudakov form factors:

Collision Rates & Numbers

•lifetime of interacting phase: ~ 3 fm/c

•partonic multiplication due to the initial & final state radiation increases the collision rate by a factor of 4-10

> are time-scales and collision rates sufficient for thermalization?

Photon Production in the PCM

What can we learn from photons?

primary-primary collision contribution to yield is < 10%
emission duration of preequilibrium phase: ~ 0.5 fm/c

 photon yield directly proportional to the # of hard collisions
 photon yield scales with N_{part}^{4/3}

Photons: pre-equilibrium vs. thermal

•short emission time in the PCM, 90% of photons before 0.3 fm/c >hydrodynamic calculation with $\tau_0=0.3$ fm/c allows for a smooth continuation of emission rate pre-equilibrium contributions are easier identified at large p_t:
 window of opportunity above p_t=2 GeV

•at 1 GeV, need to take thermal contributions into account

HBT Interferometry: formalism

• Correlation between two photons with momenta k_1 and k_2 is given by:

$$C(\vec{q},\vec{K}) = 1 + \frac{1}{2} \frac{\left| \int d^4 x \, S(x,\vec{K}) \, e^{ixq} \right|^2}{\int d^4 x \, S(x,\vec{k_1}) \int d^4 x \, S(x,\vec{k_2})} \quad \text{with } \vec{q} = \vec{k_1} - \vec{k_2} \text{ and } \vec{K} = (\vec{k_1} - \vec{k_2})/2$$

with S(x,k) the photon source function for a chaotic source

- > use Wigner function scheme (Hansa code by Sollfrank & Heinz)
 - emission vertices of a semiclassical transport are not valid Wigner fnct.
 - > need to smear out emission vertices x_i by \hbar/p_i
- ➤ results are given in terms of outward, sideward & longitudinal correlators $q_{long} = |k_{1z} k_{2z}| = |k_{1T} \sinh y_1 k_{2T} \sinh y_2|$ $q_{out} = \vec{q}_T \ \vec{K}_T / K_T$ $q_{side} = |\vec{q}_T q_{out} \vec{K}_T / K_T|$

Photons: HBT Interferometry

•p_t=2 GeV: prethermal photons dominate, small radii

•p_t=1 GeV: superposition of pre- & thermal photons: increase in radii

Landau-Pomeranchuk-Migdal Suppression

• the LPM effect accounts for the suppression of radiation due to coherence effects in multiple scattering

• if the radiating parton d suffers a collision before τ_{form} has elapsed, then the radiation of parton e and it's daughters does not take place

• likewise for parton *f* with respect to *e* ...

LPM: Reaction Dynamics

gluon p_t distribution

- high p_t: harder slope, enhanced particle production
- low p_t: suppression of particle production

Photon Production: LPM & comparison to data

PCM without LPM:

• overprediction of photon yield

PCM with LPM:

- photon yield for p_t < 6 GeV strongly reduced
- strong p_t dependence of LPM suppression
- good agreement with data

Part #2: Photons via Jet-Plasma Interactions

R.J. Fries, B. Mueller & D.K. Srivastava, PRL 90, 132301 (2003)

Photon sources

• Hard direct photons pQCD calculation including shadowing 0000000 EM bremsstrahlung pQCD calculation including shadowing Thermal photons from hot medium 10¹ Central Au+Au (s^{1/2}=200AGeV) Jet-photon conversion 10° <N_{cb}>=800 10 q₀dN√d³q [GeV⁻²] y|<0.35 10^{-2} 10⁻³ 10^{-4} Hadron Gas 10-QGP (T=370MeV) initial pQCD (pp) 10-6 sum Turbide, Gale & Rapp, PRC 69 014903 (2004) 2 3 1 q, [GeV]

4

Jet-Plasma interactions

plasma mediates a jet-photon conversion:

jet passing through the medium:

- •large energy loss: jet quenching
- •electromagnetic radiation (real and virtual photons) from jetmedium interactions
- •suppressed by α_{EM} ; negligible as a source of additional jet quenching
- can escape without rescattering
 >use as probe of energy loss?
- visible among other sources of electromagnetic signals?

QGP-Induced EM Radiation

 annihilation and compton processes peak in forward and backward directions:

$$\vec{p}_{\gamma} \approx \vec{p}_{q}$$

$$\vec{d\sigma}_{dt} \sim \frac{u}{t} + \frac{t}{u}$$

$$\vec{p}_{\gamma} \approx \vec{p}_{q}$$

$$\vec{d\sigma}_{dt} \sim \frac{t}{t} + \frac{s}{u}$$

- one parton from hard scattering, one parton from the thermal medium; cutoff $p_{\gamma,min} > 1$ GeV/c.
- > photon carries momentum of the hard parton
- Jet-Photon Conversion

Jet-Photon Conversion: Rates

• annihilation and compton rates:

• thermal medium:

$$E_{\gamma} \frac{dN_{\gamma}}{d^3 p_{\gamma}} = \frac{\alpha \alpha_s}{8\pi^2} \int d^4 x \frac{2}{3} \left[f_q(p_{\gamma}) + f_q(p_{\gamma}) \right] T^2 \left(\ln \frac{4E_{\gamma}T}{m^2} + C \right)$$

FMS Results: Comparison to Data

FMS: Centrality Dependence and Jet-Quenching

- centrality dependence well described
- effect of energy-loss on jets before conversion ~ 20% (Turbide, Gale, Jeon & Moore: hep-ph/0502248)

Application: Monitoring Jet Quenching

full jet reconstruction not possible at RHIC:

- Measure suppression of single inclusive hadron spectra (compare to p+p baseline)
- better: photon-tagged jets (Wang & Sarcevic)
 - q+g → q+γ: recoil photon knows the initial energy of the jet
 - measure energy loss of quark as a function of quark energy E
- hotons from jet-photon conversion provide a third, independent measurement. (FMS)
 - better handle on the L dependence of energy loss
 - jet-photon conversion is background for photon tagged jets

Summary

Photon Production in the PCM:

- Photon yield very sensitive to parton rescattering
- > LPM effect needed for proper description of reaction dynamics
- HBT experimentally challenging, but feasible with high statistics data sets
- calculable in the framework of PCM and hydro
- \succ short emission duration in pre-equilibrium phase: small radii at high p_t
- > larger source at later times due to emission of thermal photons

Photon Production via Jet-Medium Interactions:

- jet-photon conversion may contribute up to 50% @ 4 GeV to photon yield
- results compatible with PHENIX data (centrality dependence, R_{AA})
- analogous process for virtual photons: contribution to dilepton production