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The early stages of Heavy Ion Collisions
in the Color Glass Condensate framework
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Heavy ion collisions

z

ct

n τ ∼ 0 fm/c
n Production of hard particles
n calculable with the tools of perturbative QCD
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Heavy ion collisions

n τ ∼ 0.2 fm/c
n Production of semi-hard particles
n relatively small momentum : p⊥ . 1–2 GeV
n make up for most of the multiplicity
n sensitive to the physics of saturation (CGC)
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Heavy ion collisions

n Thermalization
u experiments tend to point towards a fast thermalization (?)
u but this is still not fully understood from QCD
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Heavy ion collisions

n Quark gluon plasma
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Heavy ion collisions

n Hot hadron gas
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Heavy ion collisions

n Chemical freeze-out :
density too small to have inelastic interactions

n Kinetic freeze-out :
density too small to have elastic interactions
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What is the CGC good for?

n describes the content of nucleons and nuclei at small x
n framework to calculate the production of semi-hard particles
n provides initial conditions for the subsequent evolution
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Nucleon at rest

n Very complicated non-perturbative object...
n Contains lots of fluctuations at all space-time scales smaller

than Λ−1
QCD

n Only the fluctuations that live longer than the external probe
are relevant in the interaction process

n All the effect of the shorter-lived fluctuations is to
renormalize the coupling and masses

n Interaction processes are very complicated if the nucleon
constituents have non-trivial interactions over the
characteristic timescale seen by the probe
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Nucleon at high energy

n Time dilation of all the internal timescales of the nucleon
n The interactions among the constituents now occur over

timescales much larger than the interaction with the external
probe B the constituents behave as if they were free

n Some of the fluctuations now live long enough to be seen.
The nucleon appears denser at high energy. The new
partons have a smaller momentum fraction x

n Previous fluctuations are now frozen over the timescale of
the probe, and merely act as static sources of new partons
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Evolution and saturation

B at low energy, only valence quarks are present in the hadron
wave function
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Evolution and saturation

B when energy increases, new partons are emitted

B the emission probability is αs

∫

dx
x ∼ αsln( 1

x ), with x the
longitudinal momentum fraction of the gluon
B at small-x (i.e. high energy), these logs need to be
resummed
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Evolution and saturation

B as long as the density of constituents remains small, the
evolution is linear: the number of partons produced at a given step
is proportional to the number of partons at the previous step (BFKL)
Kuraev, Lipatov, Fadin (1977), Balitsky, Lipatov (1978)
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Evolution and saturation

B eventually, the partons start overlapping in phase-space
B parton recombination becomes favorable
B after this point, the evolution is non-linear:
the number of partons created at a given step depends non-linearly
on the number of partons present previously
Balitsky (1996), Kovchegov (1996,2000)
Jalilian-Marian, Kovner, Leonidov, Weigert (1997,1999)
Iancu, Leonidov, McLerran (2001)
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Saturation criterion

Gribov, Levin, Ryskin (1983), Mueller, Qiu (1986)

n Number of partons per unit area:

ρ ∼ xG(x,Q2)

πR2

n Recombination cross-section:

σgg→g ∼ αs

Q2

n Recombination if ρσgg→g & 1, or Q2 . Q2
s, with:

Q2
s ∼ αsxG(x,Q2

s)

πR2
∼ A1/3 1

x0.3

n At saturation, the gluon phase-space density is:

dNg

d2~x⊥d2~p⊥

∼ ρ

Q2
∼ 1

αs



Heavy Ion Collisions

Overview of the CGC
l What is the CGC good for?

l Parton model
l Evolution and saturation
l Degrees of freedom

l YM equation and saturation

l Evolution with x
l Calculation of observables

Particle multiplicity [1]

Gluon production

Particle multiplicity [2]

Quark production

Instabilities

Conclusions

François Gelis – 2005 “Supercomputing RHIC Physics”, TIFR, Mumbai, December 2005 - p. 17

Saturation domain

log(Q 2)

log(x -1)

ΛQCD

n Boundary defined by Q2 = Q2
s(x)
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Degrees of freedom and their interplay

McLerran, Venugopalan (1994)
Iancu, Leonidov, McLerran (2001)

n Small-x modes have a large occupation number
B they are described by a classical color field Aµ

n The large-x modes, slowed down by time dilation, are
described as frozen color sources ρa. They act as sources
for the modes at lower values of x

n The classical field obeys Yang-Mills’s equation:

[Dν , F
νµ]a = δµ+δ(x−)ρa(~x⊥)

n The color sources ρa are random, and described by a
distribution functional Wx0

[ρ], with x0 the separation between
“small-x” and “large-x”.
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Yang-Mills equation and saturation

n The solution of the classical Yang-Mills equation is the sum
of all the tree diagrams that connect the point where the
gauge field is evaluated to an arbitrary number of sources :

B this solution incorporates all the diagrams responsible for
saturation
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Evolution with x
Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner

n The distribution Wx0
[ρ] evolves with x0 (more modes are

included in W as x0 decreases)

n In a high density environment, the newly created gluons can
interact with all the sources already present:

n The evolution is governed by the JIMWLK equation:

∂Wx0
[ρ]

∂ ln(1/x0)
=

1

2

Z

~x⊥,~y⊥

δ

δρa(~x⊥)
χab(~x⊥, ~y⊥)

δ

δρb(~y⊥)
Wx0

[ρ]

B χab depends on ρ to all orders
B reduces to BFKL in the low density regime
B diffusion equation in a functional space
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Initial condition - MV model

n The JIMWLK equation must be completed by an initial
condition, given at some moderate x0

n As with DGLAP, the problem of finding the initial condition is
in general non-perturbative

n The McLerran-Venugopalan model is often used as an initial
condition at moderate x0 for a large nucleus :

z

u partons distributed randomly
u many partons in a small tube
u no correlations at different ~x⊥

n The MV model assumes that the density of color charges
ρ(~x⊥) has a Gaussian distribution :

Wx0
[ρ] = exp

»

−
Z

d2~x⊥
ρa(~x⊥)ρa(~x⊥)

2µ2(~x⊥)

–
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Calculation of observables
n Required steps:

u Solve the classical Yang-Mills equations for arbitrary sources
ρ1,2. For the collision of two nuclei at high energy, the current in
the YM equations reads

Jµ = δµ+δ(x−)ρ1(~x⊥) + δµ−δ(x+)ρ2(~x⊥)

B so far, analytical solutions are known only if the source of one
of the projectiles is treated at lowest order
B the full solution (all orders in the two sources) has been
determined numerically

u Calculate the relevant matrix element M with the previously
obtained gauge field in the background
Note : the background field is now time-dependent, and
transitions from the vacuum to populated states are non zero

u Perform the average over the sources of each projectile, with the
weights Wx1

[ρ1] and Wx2
[ρ2]
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Particle multiplicity
n Particle multiplicities are more relevant in situations where

the external sources are large, and produce a copious
amount of particles. One method would be to calculate all
the probabilities Pn for producing n particles, and to get n
as n=

∑+∞
n=1nPn

n The transition probabilities are hard to calculate in the
presence of strong time dependent sources (vacuum-vacuum
diagrams must be included, because their sum is not a pure phase)

n Instead, one can bypass these difficulties by using the
following equivalent formula :

Ep
dn

d3~p
=

1

16π3

˙

0in

˛

˛a†out(~p)aout(~p)
˛

˛0in

¸

n For simplicity, consider here a scalar theory coupled to a
strong external source (such that gj(x) ∼ O(1)) :

L =
1

2
(∂µφ)(∂µφ) − 1

2
m2φ2 − g

3!
φ3 + jφ
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Reduction formula
n The reduction formula for this correlator is :

˙

0in

˛

˛a†out(~p)aout(~p)
˛

˛0in

¸

=

„

i√
Z

«2 Z

d4xd4y e−ip·(x−y)

×(�x +m2)(�y +m2)
˙

0in

˛

˛φ(x)φ(y)
˛

˛0in

¸

n This can be calculated by the Schwinger-Keldysh method,
with a time contour C that wraps around the real axis :

n This also solves the problem of the lack of time ordering
between the two fields. Assign φ(x) to the lower branch of C
and φ(y) to the upper branch: the two fields are now “path
ordered”. In other words :

˙

0in

˛

˛φ(x)φ(y)
˛

˛0in

¸

=

=
˙

0in

˛

˛Pφ(−)
in (x)φ

(+)
in (y)ei

R

C
d4xLint(φin)

˛

˛0in

¸
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Perturbative expansion

n Feynman rules in momentum space :
u Assign a + or − index to each vertex, and sum over this index
u + vertices come with a −ig, and − vertices have a +ig

u Connect a vertex i to a vertex j by a propagator G0
ij(p)

u Free propagators :

G0
++(p) =

i

p2 −m2+iε
G0

−−(p) =
−i

p2 −m2−iε
G0

−+(p) = 2πθ(p0)δ(p2 −m2) G0
+−(p) = 2πθ(−p0)δ(p2 −m2)

n Note : the vacuum-vacuum diagrams are all zero

n The particle spectrum is obtained from the propagator G−+,
via the formula :

Ep
dn

d3~p
=

1

16π3

Z

d4xd4ye−ip·(x−y)(�x +m2)(�y +m2)G−+(x, y)



Heavy Ion Collisions

Overview of the CGC

Particle multiplicity [1]

l Reduction formula
l Classical approximation

Gluon production

Particle multiplicity [2]

Quark production

Instabilities

Conclusions

François Gelis – 2005 “Supercomputing RHIC Physics”, TIFR, Mumbai, December 2005 - p. 26

Classical approximation

n The classical approximation is the sum of the leading terms
in g, at fixed gj(x). Diagrammatically, this corresponds to a
product of two disconnected tree diagrams :

x y
- +

n Thus, it sums all the terms of order g−2(gj)n

n The sum over the ± indices attached to the vertices in each
of the tree diagrams can be performed by noting that :

For i = +,− , G0
i+(x, y) −G0

i−(x, y) = G0
R

(x, y)

n Using this property recursively, one can prove that the sum
of these tree diagrams is nothing but the retarded solution of
the classical equation of motion, with the boundary condition
φ(x0 = −∞) = 0
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Classical approximation

n Consider a generic tree diagram whose root is at the point x,
with an index +

x
+

n Start with the leaves of the tree that are the farthest away
from the root, and sum over the index i = ± of each leaf.
The result is a set of factors

∫

d4yG0
R
(· · · , y)j(y), which are

independent of the indices carried by the vertices on the
layer immediately below

n Sum over the indices of the vertices at the next layer. Again,
we obtain retarded propagators. Proceed until the end

n Finally, one gets n in terms of the retarded solution φc of the
EOM :

Ep
dn

d3~p

˛

˛

˛

˛

classical

=
1

16π3

˛

˛(p2 −m2)φc(p)
˛

˛

2
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Classical approximation

n (p2 −m2)φc(p) is given by a 4-dim Fourier transform :

(p2 −m2)φc(p) = −
Z

d4x eip·x (�x +m2)φc(x)

n This formula is cumbersome in practice because it requires
to store the solution of the EOM at all times

n Instead, notice that :

φc(x) =

Z

d4z G0
R

(x, z) (�z +m2)φc(z) ,

from which one can obtain :

(p2 −m2)φc(p) = lim
x0→+∞

Z

d3~x eip·x [∂x0
− iEp]φc(x)

n With the latter formula, one needs only a spatial Fourier
transform of the classical field at late times. It is only
necessary to keep the classical field at the current time when
solving the EOM
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Gluon production

n At the classical level, the gluon spectrum is given directly by
the retarded solution of Yang-Mills equations:

Ep
dng

d3~p
=

1

16π3

X

λ

˛

˛

˛

˛

lim
x0→+∞

Z

d3~x eip·x [∂x0
− iEp] ε(λ)

µ (~p)Aµ(x)

˛

˛

˛

˛

2

n The calculation is usually done in the gauge :

Aτ = x+A− + x−A+ = 0

u This gauge interpolates between two light-cone gauges : A− = 0

on the trajectory z = t and A+ = 0 on the trajectory z = −t
u This implies that the produced gauge field does not make the

currents J+, J− precess
n In this gauge, it is easy to find the field at τ = 0+, and then let it

evolve according to the vacuum Yang-Mills equations (because the
currents are zero at τ > 0)



Heavy Ion Collisions

Overview of the CGC

Particle multiplicity [1]

Gluon production

l Classical color field
l Results

Particle multiplicity [2]

Quark production

Instabilities

Conclusions

François Gelis – 2005 “Supercomputing RHIC Physics”, TIFR, Mumbai, December 2005 - p. 30

Classical color field

n Space-time structure of the classical color field:

z

t

1

32

4

u Region 1 : no causal relation to either nuclei
u Region 2 : causal relation to the 1st nucleus only
u Region 3 : causal relation to the 2nd nucleus only
u Region 4 : causal relation to both nuclei
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Classical color field

n Propagation through region 1:

z

t

B trivial : the classical field is entirely determined by the
initial condition, i.e.

Aµ = 0
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Classical color field

n Propagation through region 2:

z

t τ i

B the Yang-Mills equation can be solved analytically when
there is only one nucleus :

A+ = A− = 0 , Ai = θ(x−)
i

g
U1(~x⊥)∂iU†

1 (~x⊥)

with U1(~x⊥) = T+ exp ig

Z

dx+T a 1

∇
2
⊥

ρa
1(x+, ~x⊥)
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Classical color field

n Propagation through region 3:

z

t τ i

B the Yang-Mills equation can be solved analytically when
there is only one nucleus :

A+ = A− = 0 , Ai = θ(x+)
i

g
U2(~x⊥)∂iU†

2 (~x⊥)

with U2(~x⊥) = T− exp ig

Z

dx−T a 1

∇
2
⊥

ρa
2(x−, ~x⊥)
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Classical color field

n Propagation through region 4:

z

t τ iτ f

B one must solve numerically the Yang-Mills equations with
the following initial condition at τi = 0+ :

Ai(τ = 0, ~x⊥) =
i

g

“

U1(~x⊥)∂iU†
1 (~x⊥) + U2(~x⊥)∂iU†

2 (~x⊥)
”

Aη(τ = 0, ~x⊥) = − i

2g

h

U1(~x⊥)∂iU†
1 (~x⊥) , U2(~x⊥)∂iU†

2 (~x⊥)
i
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Energy per unit rapidity

n Time dependence of dE/dη:

0 0.5 1 1.5 2
τ (fm)

0

500

1000

1500

2000

dE
/d

η 
(G

eV
)
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Gluon spectrum

n Gluon spectra for 5122 and 2562 lattices:

0 1 2 3 4 5 6 7
~k/g

2µ

0

0.05

0.1

0.15

0.2

2~ k4 /(
g6 µ4 R

A
2 ) d

N
/d

2 k

u Lattice artifacts at large momentum (does not affect much the
overall number of gluons)

u Important softening at small k⊥ compared to pQCD
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Anisotropy

n The boost invariance of the sources implies that the
distribution of the produced gluons depends only on the
difference η − y

n This by itself does not say anything about the local isotropy
of the particle distribution. Indeed, it is also satisfied by
Bjorken hydrodynamics...

n What is specific to the MV model is that, at leading order,
this function of η − y is close to a delta function :

dng

d3~xd3~p
∼ δ(η − y)

B the gluon distribution is extremely anisotropic
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Production of pairs

n The production of pairs arises at the order (gj)n. It is
obtained by summing all the simply connected tree
diagrams :

x y
- +

n One can perform a partial resummation of all the
sub-diagrams that correspond to the classical solution :

φc = = ∑
trees

+/-

n Thus, we need the tree level propagator G−+(x, y) with the
retarded field φc in the background. (The classical field
insertion is the same for the + and − indices)
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Production of pairs

n The production of pairs arises at the order (gj)n. It is
obtained by summing all the simply connected tree
diagrams :

x y
- +

n One can perform a partial resummation of all the
sub-diagrams that correspond to the classical solution :

φc = = ∑
trees

+/-

n Thus, we need the tree level propagator G−+(x, y) with the
retarded field φc in the background. (The classical field
insertion is the same for the + and − indices)
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Production of pairs

n The summation is done by a Lippmann-Schwinger equation :

Gij(x, y) = G0
ij(x, y) − ig

X

k=±

Z

d4z G0
ik(x, z)φc(z)(−1)kGkj(z, y)

n After some work, one gets :

Ep
dn

d3~p

˛

˛

˛

˛

pairs

=
1

16π3

Z

d3~q

(2π)32Eq
|T

R
(p,−q)|2

where G
R
≡ G0

R
+G0

R
∗ T

R
∗G0

R
B One must get the retarded

propagator in the classical field φc, amputate the external legs,
square and integrate over the (on-shell) momentum at one end

n After more work, one obtains :

TR(p,−q) = lim
x0→+∞

Z

d3~x eip·x [∂x0
− iEp] η(x)

with
`

� +m2 + gφc(x)
´

η(x) = 0 and η(x) = eiq·x when x0 → −∞
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Quark production
FG, Kajantie, Lappi (2004, 2005)

n The inclusive quark spectrum can be obtained from the
retarded propagator of the quark in the classical color field:

Ep
dnq

d3~p
=

1

16π3

Z

d3~q

(2π)32Eq
|u(~p)TR(p,−q)v(~q)|2

n Alternate representation of the retarded amplitude:

u(~p)TR(p,−q)v(~q) = lim
x0→+∞

Z

d3~x eip·x u†(~p)ψq(x)

(i/∂x−g/A(x)−m)ψq(x) = 0 , ψq(x0, ~x) →
x0→−∞

v(~q)eiq·x

n On a surface of constant proper time:

u(~p)TR(p,−q)v(~q) = lim
τ→+∞

τ

Z

dηd2~x⊥ eip·x u†(~p) e−ηγ0γ3

ψq(x)

t = τ cosh(η) , z = τ sinh(η)
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Background field

n Space-time structure of the classical color field:

z

t

1

32

4
u Region 1: Aµ = 0

u Region 2: A± = 0,
Ai = i

g
U1∇i

⊥U
†
1

u Region 3: A± = 0,
Ai = i

g
U2∇i

⊥U
†
2

u Region 4: Aµ 6= 0

n Notes:
u In the region 4, Aµ is known only numerically
u We will have to solve the Dirac equation numerically as well
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Quark propagation

n Propagation through region 1:

z

t

B trivial because there is no background field

ψq(x) = v(~q)eiq·x
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Quark propagation

n Propagation through region 2:

z

t τ i

B Pure gauge background field

B ψ−
q

(τi) can be obtained analytically
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Quark propagation

n Propagation through region 3:

z

t τ i

B Pure gauge background field

B ψ+
q

(τi) can be obtained analytically
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Quark propagation

n Propagation through region 4:

z

t τ iτ f

B One must solve the Dirac equation :
ˆ

i/∂ − g/A−m
˜

ψq(τ, η, ~x⊥) = 0

B initial condition: ψq(τi) = ψ+
q (τi) + ψ−

q (τi)

(τi = 0+ in practice)
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Main difficulties

n The Boost invariance (i.e. the η-independence of the
background color field) only implies that :

e−
η
2

γ0γ3

ψp(τ, η, ~x⊥) depends only on η − yp

n The final projection will lead to an amplitude T
R
(p,−q) that

depends on the difference of the rapidities of the quark and
the antiquark, yq − yp. But the rapidity η does not go away in
intermediate stages of the calculation

n Moreover, the rapidity η is not a good variable to represent
the initial condition at τi = 0. We use z instead
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Time dependence

n g2µ = 2 GeV , (*) g2µ = 1 GeV :

0 0.05 0.1 0.15 0.2 0.25
τ [fm]

0
10

0
20

0
30

0
dN

 / 
dy

m = 60 MeV
m = 300 MeV
m = 600 MeV
m = 1.5 GeV
m = 300 MeV *



Heavy Ion Collisions

Overview of the CGC

Particle multiplicity [1]

Gluon production

Particle multiplicity [2]

Quark production

l Background field

l Quark propagation

l Main issues
l Results

Instabilities

Conclusions

François Gelis – 2005 “Supercomputing RHIC Physics”, TIFR, Mumbai, December 2005 - p. 48

Spectra for various quark masses

n g2µ = 2 GeV , τ = 0.25 fm :

0 1 2 3 4
q̂ [GeV]

0
5×

10
4

1×
10

5
2×

10
5

dN
/d

yd
2 q T

 [a
rb

itr
ar

y 
un

its
]

m = 60 MeV
m = 300 MeV
m = 600 MeV
m = 1.5 GeV
m = 3 GeV
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Mass dependence of dN/dy

n Number of quarks at τ = 0.25 fm :

0 0.5 1 1.5
m [GeV]

0
10

0
20

0
30

0
dN

 / 
dy

g2µ = 2 GeV
g2µ = 1 GeV
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g2mu dependence of dN/dy

n Number of quarks at τ = 0.25 fm :

0 0.5 1 1.5 2
g2µ [GeV]

0
10

0
20

0
30

0
dN

 / 
dy

m = 300 MeV
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Phenomenological implications

n Quarks seem to be produced early

n For g2µ = 2 GeV, one gets about 1000 gluons per unit
rapidity, and 900 pairs of light quarks (3 flavors)

n This is roughly consistent with approximate chemical
equilibration: nquarks/ngluons = 9Nf/24 ∼ 1 for 3 flavors

n If this is true, we must revise our additions :

u RHIC experiments observe about 600 charged particles
per unit rapidity at

√
s

NN
= 200 GeV, i.e. about 1000

particles (charged + neutral)

u To get a total of 1000 partons, one would have to take a
somewhat smaller saturation momentum g2µ ∼ 1.2 GeV,
so that ngluons ∼ nquarks ∼ nantiquarks ∼ 330
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Stability of the boost-invariant solution

Romatschke,Venugopalan (2005)

n One obvious question at this point is whether the boost
invariant solution for the classical color field is stable.
In other words, how do rapidity dependent perturbations of
the solution evolve in time ?

n Model :
u at some very small τ , perturb the boost invariant solution by a

rapidity-dependent additional term
u solve the 3+1 dimensional classical Yang-Mills equations
u compute the component τ2T ηη of the energy-momentum tensor

(which would be zero in the boost invariant case)
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Growth of the longitudinal pressure

0 250 500 750 1000 1250 1500
g2 µ τ

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

m
ax

 τ
2  T

ηη
 / 

g4  µ
3  L

η

c0+c1 Exp(0.502 Sqrt(g2 µ τ))

n Exponential growth, followed by a saturation
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Plasma instabilities

n This instability in the classical Yang-Mills equations can be
related to the Weibel instabilities known in the physics of
anisotropic plasmas

n In an anisotropic plasma, the Hard Thermal Loop gluon
polarization tensor leads to a “Debye mass” squared that
depends on the direction of the gluon momentum

n In certain directions, one can have m2
D
< 0

B anti-screening instead of the usual screening!
n The collective phenomena in such a plasma will blow the

system apart
n In the linear regime, the growth of the fields due to this

instability is of the form exp(Γt). Γ is determined by the most
unstable mode, and is related to the plasmon mass by :

Γ =

√
3

2
ωplasmon
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Plasma instabilities
n From the solution of the boost-invariant Yang-Mills equation,

one can determine the “dispersion relation” ω(~p⊥) by doing a
plane wave decomposition of the gauge field. This gives :

ωplasmon = ω(~p⊥ = ~0) ∼
√

g2µ

τ

Note: the square of the plasmon mass is usually linear in the
particle density, which is decreasing as τ−1. Hence the τ−1/2

behavior of ωplasmon

n Translating the value of ωplasmon into a value of Γ, we expect
the longitudinal part of the energy-momentum tensor to grow
as :

τ2T ηη ∼ e2Γτ = eγ
√

g2µτ

with a coefficient γ of order unity

B the instability observed in the Yang-Mills equation may
have the same origin as the instability obtained from the HTL
calculation
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NLO gluon production

n As long as the η-dependent perturbation is small, it can be
treated as a perturbation by linearizing the Yang-Mills
equations
B one obtains a linear evolution equation for the
perturbation, in a background provided by the boost-invariant
solution

δAµ
in δAµ

out

n In fact, this linear approximation explains the exponential
growth. The instability ends when the linear approximation
breaks down

n This diagram is also what is needed in order to calculate the
correction to the number of gluons due to the production of
pairs of gluons
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NLO gluon production

n The instability may also affect NLO gluon production
n Normally, one expects a correction of order 1 to the number

of gluons, compared to α−1
s for the leading contribution

n If the instability kicks in, this might be enhanced by a factor

eγ
√

g2µτ

n This means that the “subleading” correction would be as
large as the leading contribution after a time

τ ∼ (g2µ)−1 ln2

(

1

αs

)

For g2µ ∼ 1 GeV and αs ∼ 0.2, this gives τ ∼ 0.5 fm
n After that, the classical approximation would be invalid
n Note also that the gluons produced in pairs have a

momentum distribution which much less anisotropic than
that of gluons produced at leading order
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Conclusions
n Initial gluon and quark production can be studied by solving

the Yang-Mills and Dirac equations with retarded boundary
conditions

n The number of quarks is as large as the number of gluons
(not very surprising when the coupling is g ∼ 2)

n The boost invariant solution of the Yang-Mills equations is
unstable, with a growth which is compatible with what one
expects from plasma instabilities

n Outstanding issues :
u Is the instability affecting subleading gluon production ?
u Are there other quantities, besides n, that are accessible from

retarded solutions of the classical EOM?
u Numerical solution of the JIMWLK equation

(see Rummukainen, Weigert (2003) for a pionneer work on this)
u Pomeron loops
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Production of pairs

n The summation of all the classical field insertions can be
done via a Lippmann-Schwinger equation :

Gij(x, y) = G0
ij(x, y) − ig

X

k,l=±

Z

d4z G0
ik(x, z)φc(z)σ

3
klGlj(z, y)

n This equation is quite non-trivial to solve in this form,
because the 4 components of the propagator mix. Perform a
rotation on the ± indices :

Gij → Gαβ ≡
X

i,j=±

UαiUβjGij

[σ3φc(z)]ij → φc(x)Σ
3
αβ ≡

X

i,j=±

UαiUβj [σ
3φc(z)]ij

n A useful choice for the rotation matrix U is U = 1√
2

(

1 −1

1 1

)
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Production of pairs

n Under this rotation, the matrix propagator and field insertion
become :

Gαβ =

0

@

0 G
A

G
R

G
S

1

A , φc(x)Σ
3
αβ = φc(x)

0

@

0 1

1 0

1

A

where G0
S
(p) = 2πδ(p2 −m2)

n The main simplification comes from the fact that GΣ
3 is the

sum of a diagonal matrix and a nilpotent matrix
n One finds that G

R
and G

A
do not mix, i.e. they obey the

equations :

G
R,A

(x, y) = G0
R,A

(x, y) − ig

Z

d4z G0
R,A

(x, z)φc(z)GR,A
(z, y)

n One can express G
S

in terms of G
R

and G
A

:

G
S

= G
R
∗G0

R

−1 ∗G0
S
∗G0

A

−1 ∗G
A
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Production of pairs
n In order to go back to G−+, invert the rotation :

G−+ =
1

2
[GA −GR +GS ]

n Split G
R,A

into free propagators and a scattering matrix :

GR,A ≡ G0
R,A

+G0
R,A

∗ TR,A ∗G0
R,A

Note : the retarded/advanced scattering matrices T
R,A

obey :

TR − TA = TR ∗
ˆ

G0
R
−G0

A

˜

∗ TA

n Wrapping up everything, in momentum space, gives :

Ep
dn

d3~p

˛

˛

˛

˛

pairs

=
1

16π3

Z

d3~q

(2π)32Eq
|TR(p,−q)|2

B At this order, one has to obtain the retarded propagator in
the classical field φc, amputate the external legs, square and
integrate over the (on-shell) momentum at one end
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Production of pairs
n T

R
(p,−q) can be obtained from retarded solutions of the

linearized EOM with the classical field in the background
`

� +m2 + gφc(x)
´

η(x) = 0

n Start from Green’s formula for the retarded solution η(x) :

η(x) =

Z

d3~y GR(x, y)
↔

∂y0
η(y)

n The scattering matrix T
R

is related to the propagator G
R

by :

GR(x, y) = G0
R

(x, y) +

Z

z1,z2

G0
R

(x, z1)TR(z1, z2)G
0
R
(z2, y)

n From there, it is straightforward to verify that :

TR(p,−q) = lim
x0→+∞

Z

d3~x eip·x [∂x0
− iEp] η(x)

with η(x) = eiq·x when x0 → −∞
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Less inclusive quantities

n What do we know about the multiplicity distribution?
Can we calculate the probability Pn of producing n particles?

n Each transition amplitude contains a disconnected factor
which is the sum of all the vacuum-vacuum diagrams

n This sum is the exponential of the sum of connected
vacuum-vacuum diagrams :

i
X

all

V = ei
P

conn
V

n At the classical level, the sum of connected vacuum-vacuum
diagrams is :

i
X

conn

V = + + + + . . .1
2

1
6

1
8

1
8
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Cutting rules

n Each transition probability contains exp −2 Im
∑

conn V

n 2 Im
∑

conn V can be obtained from Cutkosky’s rules, but
they need to be modified because of the coupling to the
external source

n Decompose the free time ordered propagator, G0
++, as :

G0
++(x, y) = θ(x0 − y0)G0

−+(x, y) + θ(y0 − x0)G0
+−(x, y)

n Define also :

G0
−−(x, y) ≡ θ(x0 − y0)G0

+−(x, y) + θ(y0 − x0)G0
−+(x, y)

n Consider a diagram in i
∑

conn V before performing the
space-time integrations : iV (x1 · · ·xn). The xi are the
locations of the sources j, or of the vertices g. For instance :

iV (x1, x2, x3, x4) =
x1

x2

x3

x4
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Cutting rules

n The diagrams iV are made only of the propagator G0
++

n For each diagram iV (x1 · · ·xn), construct 2n diagrams
iVε1···εn

(x1 · · ·xn) where εi is a sign attached to the vertex i :
u Connect a vertex of type i to a vertex of type j by G0

ij

u For vertices of type −, substitute ig → −ig, ij → −ij
n Largest time equation : if x0

i is the largest time in the
diagram :

iV···εi···(x1 · · · xn) + iV···−εi···(x1 · · ·xn) = 0

(the indices hidden in the dots are the same for both terms)

n Therefore, the sum of the 2n iVε1···εn
is zero :

X

{εi=±}

iVε1···εn(x1 · · · xn) = 0

(group the terms in pairs, and use the previous result)
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Cutting rules

n In momentum space, the propagators G0
ij read :

G0
++(p) =

i

p2 −m2 + iε
G0

−−(p) =
ˆ

G0
++(p)

˜∗

G0
−+(p) = 2πθ(p0)δ(p2 −m2) G0

+−(p) = 2πθ(−p0)δ(p2 −m2)

n Therefore, in momentum space, iV++···+ is the original
diagram and iV−−···− is its complex conjugate

n By isolating these two terms from the sum over the 2n terms,
we get :

2 Im v =
X

{εi=±}′

iVε1···εn

where the prime indicates that the sum over the εi’s does not have
the + + · · ·+ and −− · · · − terms
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Cutting rules

n For each term in
∑

{εi=±}′ iVε1···εn
, draw a line (“cut”)

separating the + from the − vertices
n The lowest order terms in 2 Im

∑

conn V are given by :

- +

1
2 + -

1
2

+
- +

1
6

+ -
+1

6
+

-
+

1
6

+
+ -

1
6

+ +
-1

6
+

+
-

1
6

+
-
+

1
6

+ -
+

1
6

+

-+

1
6

+
+
-

1
6

+ +
-

1
6

+

+-

1
6

n Cuts through vacuum-vacuum diagrams are non-zero
because of the source j

n A cut going through r propagators will be called a r-particle
cut
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Some examples

n Let us denote :

2 Im
X

conn

V ≡ a

g2

br
g2

the sum of all r − particle cuts

n Probability of producing 1 particle :

P1 = e−a/g2 b1
g2

n Probability of producing 2 particles :

P2 = e−a/g2

»

1

2!

b21
g4

+
b2
g2

–

u (b1/g
2)2 if the 2 particles are produced in disconnected diagrams

u b2/g
2 if they are produced in the same connected diagram
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Some examples

n Lowest order diagrams in b1/g2, b2/g2, b3/g2 :

b1
g2

=
- +

1
2 + -

1
2

+
- +

1
6

+ -
+1

6
+

-
+

1
6

+
+ -

1
6

+ +
-1

6
+

+
-

1
6

b2
g2

=
-
+

1
6

+ -
+

1
6

+
-+

1
6

+
+
-

1
6

+ +
-

1
6

+

+-

1
6

b3
g2

= 1
8

- +
+

1
8

-
+ +

1
8

+ -

- +
+ . . .
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General case

n For an arbitrary number of particles, n, one must sum over
all the possibilities to produce them in various numbers of
disconnected subdiagrams :

Pn = e−a/g2

n
X

p=1

1

p!

X

α1+···+αp=n

bα1
· · · bαp

g2p

u In this formula, p is the number of disconnected subdiagrams
producing the n particles

n Unitarity :
∞

X

n=0

Pn = 1

thanks to

a =

∞
X

r=1

br



Heavy Ion Collisions

Overview of the CGC

Particle multiplicity [1]

Gluon production

Particle multiplicity [2]

Quark production

Instabilities

Conclusions

Less inclusive quantities

l Cutting rules

l Multiplicity distribution

l AGK cancellations

François Gelis – 2005 “Supercomputing RHIC Physics”, TIFR, Mumbai, December 2005 - p. 71

Moments of the distribution

n Generating function :

G(x) ≡
∞

X

n=0

Pnx
n = e−a/g2

exp

"

1

g2

∞
X

r=1

brx
r

#

n By calculating derivatives of G(x) at x = 1, it is easy to
obtain moments of the distribution :

n =
∞

X

n=1

nPn =
1

g2

∞
X

r=1

rbr

σ ≡ n2 − n2 =
1

g2

∞
X

r=1

r2br

n Note : since there are non-zero cuts with r ≥ 2 particles, we
have n 6= σ. Hence the distribution is not Poissonian
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AGK cancellations

n This approach requires to calculate the r-particle cuts br/g
2

of the vacuum-vacuum diagrams B very intricate
n In the case of the first moment of the distribution, n, we have

previously seen a much simpler method to calculate it
n The equivalence between the two methods of calculating n

implies the following identity :

1

g2

∞
X

r=1

rbr =

Z

d3~p

(2π)32Ep

˛

˛(p2 −m2)φc(p)
˛

˛

2

between weighted cuts through time-ordered diagrams and
retarded diagrams
Note: the l.h.s is much more complicated than the r.h.s

n The cancellations needed in the l.h.s in order for that to work
are known as the AGK cancellations
Abramovsky, Gribov, Kancheli (1973)
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