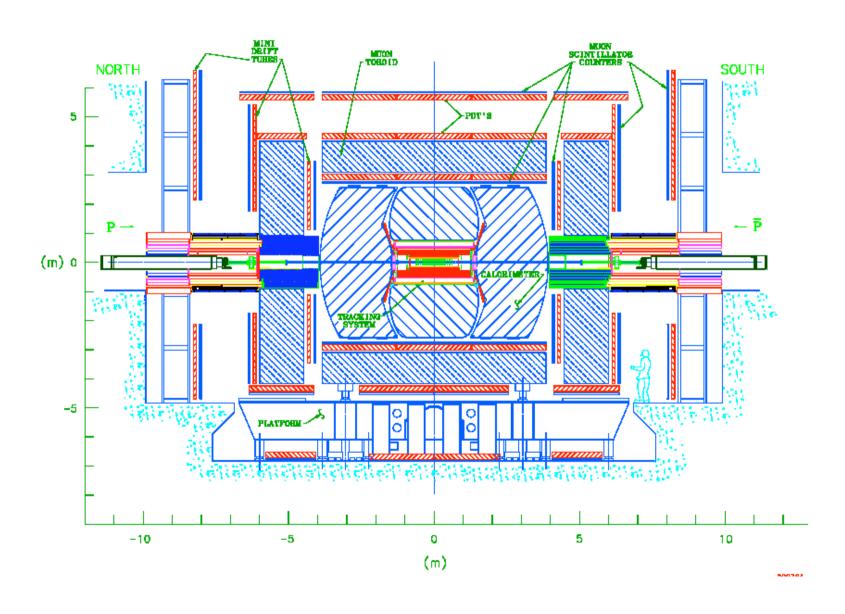
DØ, Belle & CMS Grid Computing in India

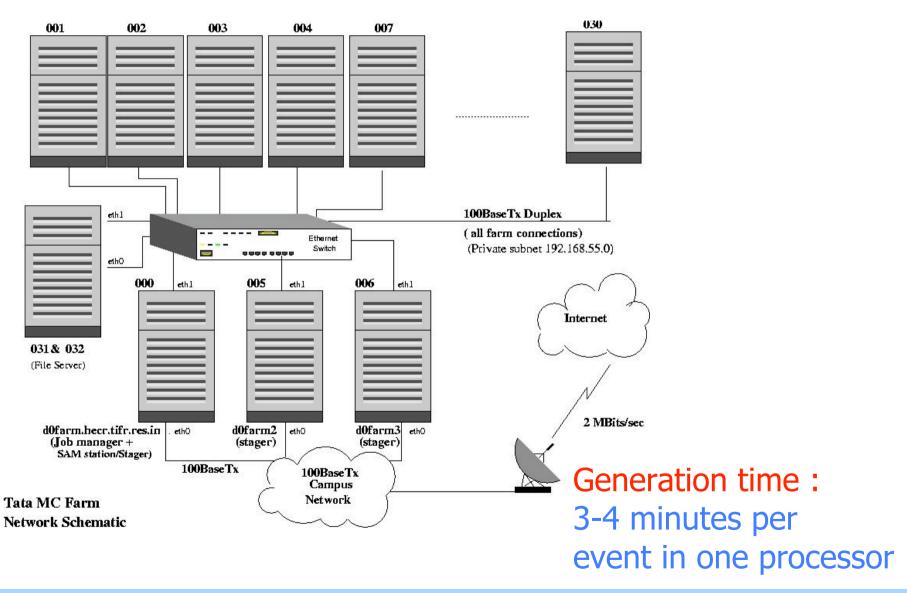

Naba K Mondal
Tata Institute, Mumbai

Supercomputing Relativistic Heavy-Ion Collision Physics, December 5-9, 2005

TIFR Activities on Computing Farm & Grid Computing

- D0 computing Farm and Grid.
- Belle Cluster.
- A pilot project for CMS Grid Computing.
- India-CMS Tier-2 Grid Station: Current Status and Future Projection.

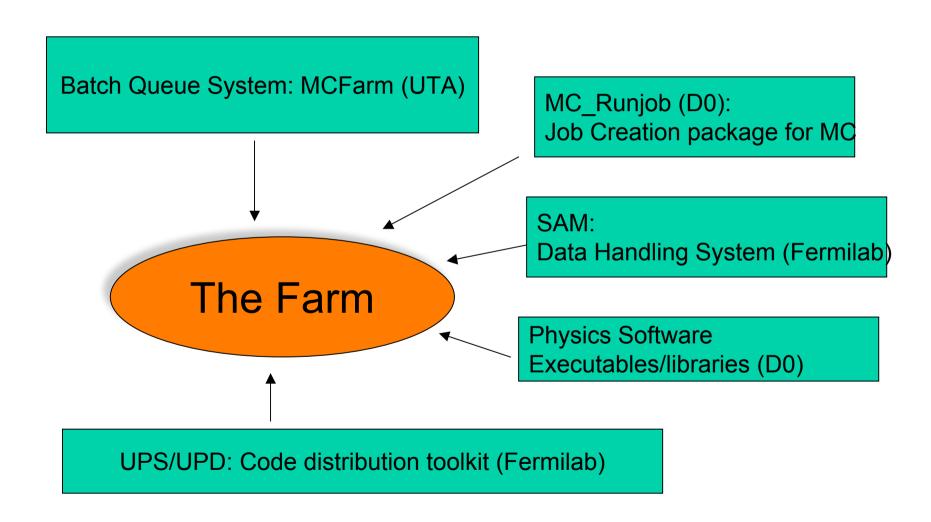
DØ Detector


Remote Computing for DØ

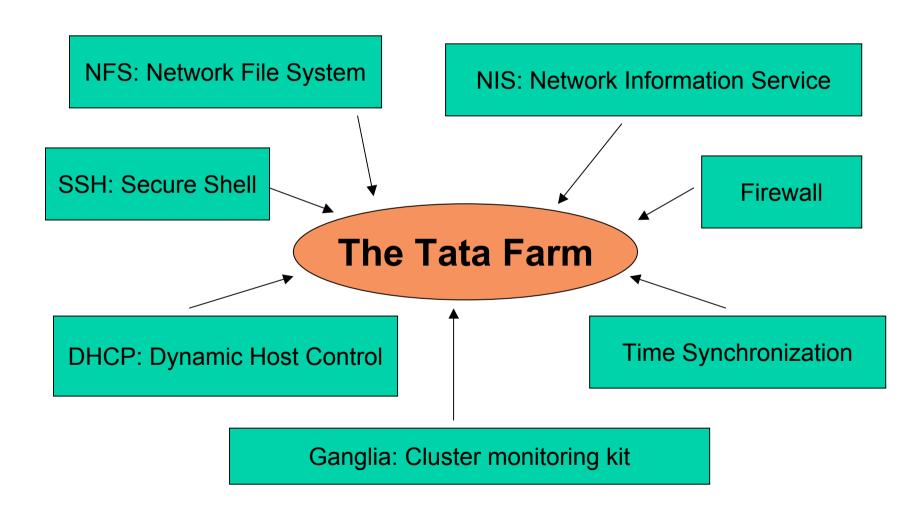
D0 Computing group's views before start of Run II

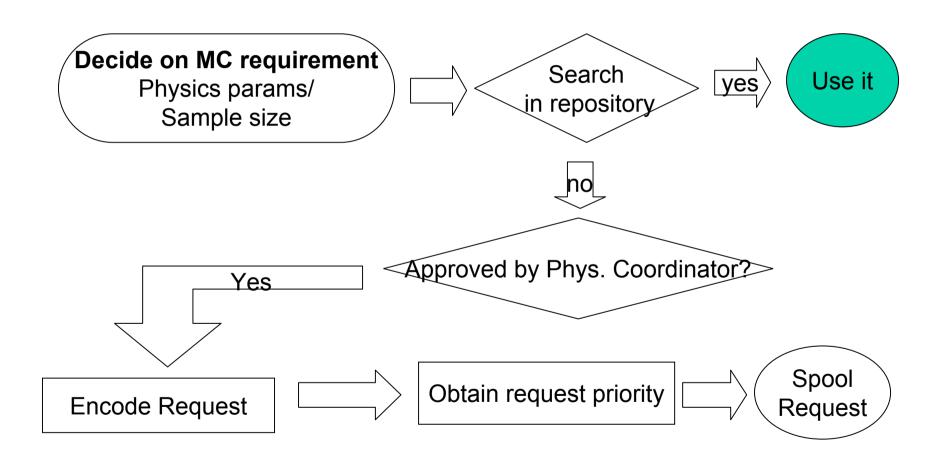
- Around the time RunII starts, 1000 CPU's of 2GHz will be required for MC studies alone.
- Such a target can be met if computing load is shared by deploying dedicated computing facilities, offsite for both MC Production and data reprocessing.

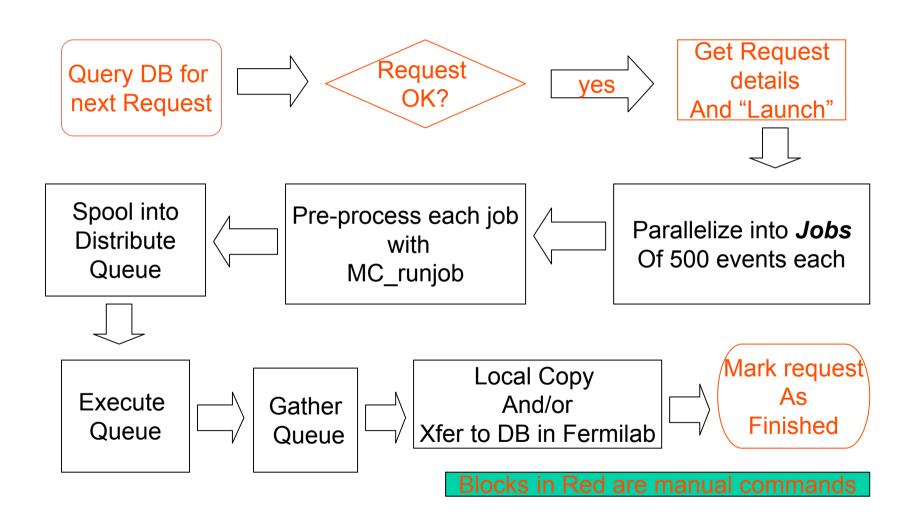
DØ Computing Farm at TIFR



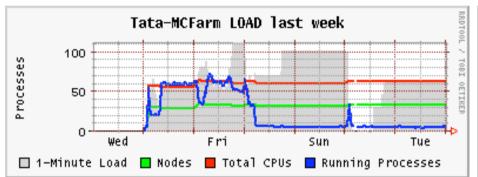
DØ Computing Farm at TIFR

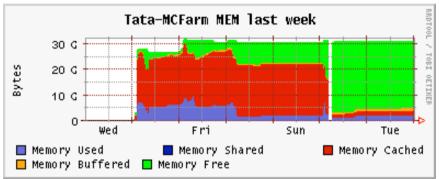


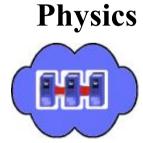

Software Components of DØ Farm

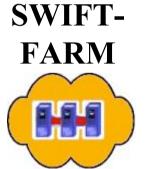

Network Services on Farm

Life Cycle of a MC request from a Physicist


Life Cycle of a MC request execution by a Farmer

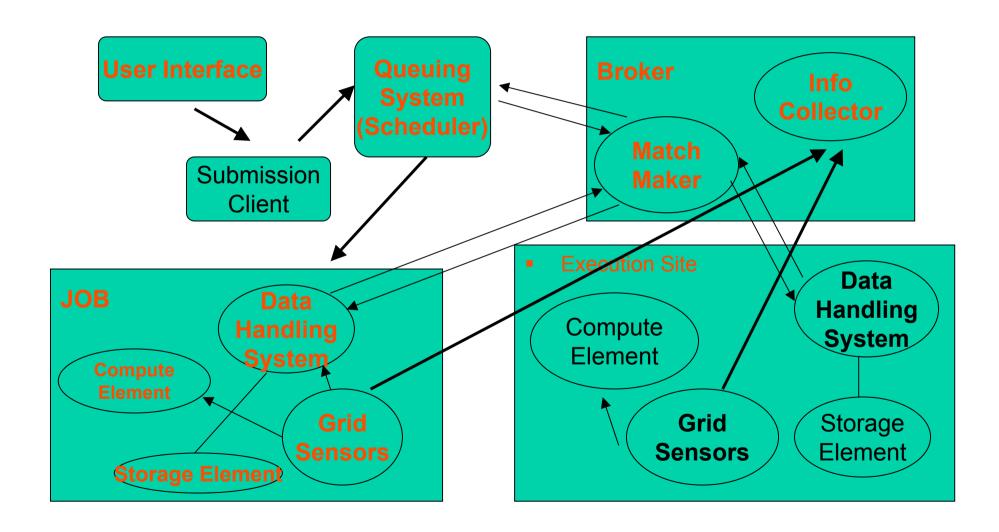



Metric Last Sorted



CSE-FARM

LTU



Tata-MCFarm

Switching over to SAMGrid

SAMGrid: Basic Action

- UI Can be any desktop/laptop, with client software installed
- User must have digital certificate signed by one of accepted
 Certificate Authorities
- For the Grid, the user job is the set of various items: request id, software versions, data inputs, job size, and any other control parameters (input sandbox)
- The *Grid Job* is received by the *Scheduler*
- The Scheduler queries the Resource Broker for free resources
- As advised by the RB, the Scheduler pushes the job to an appropriate Execution Site

SAMGrid Basic Action (Contd)

- The Gatekeeper at the chosen Exec site receives the job,
- Authentication is performed, permissions are checked
- If all OK, Gatekeeper transfers the job to Job managers
- The single grid job is decomposed into many local jobs, runnable in the local *Batch Queue System*

SAMGrid Jobs: Execution and completion

- Status of jobs in the batch system are monitored (waiting, active, errored, held,..)
- Gathering of standard output, diagnostics and other output files (output sandbox)
- Each sandbox has unique ID.
- All sandboxes are "tarred" along with log files, and <u>the single tar</u> file is transferred to the Grid (could be local Storage Element)

Current Status

Worker nodes: 44 PIII 933 MHz

8 Xeon 2.8 GHz

16 Xeon 3.0 GHz

18 Xeon 3.2 GHz

Total Computing power: 71k SI2k

Servers : Dual CPU server (Xeon

2.8GHz)

Additional

server : One P1V (1.7Ghz), to share load

of data transfers

Firewall: One PIV server acting

as Firewall and

Network Address Translator

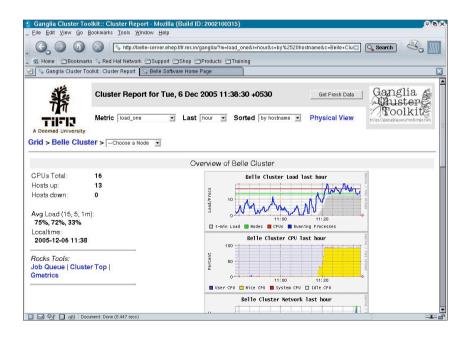
Storage: 4TB RAID storage, served

by a dual Xeon server via

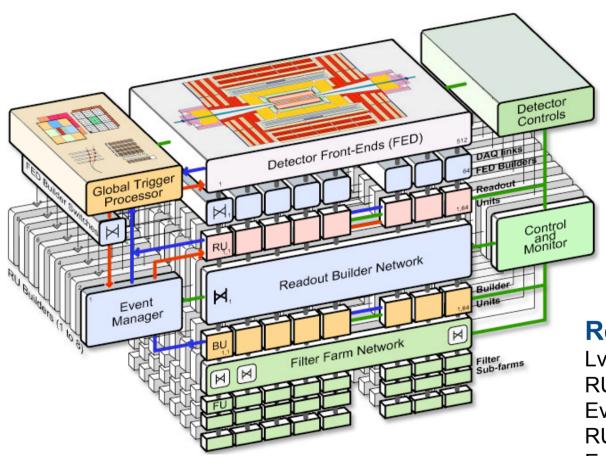
FiberChannel

BELLE CLUSTER

- 14 Pentium Class nodes
- 2 TB Disk Space, 80 GB Mass storage
- Software:
- ROCKS (3.3.0)
- Batch Processing(Platform LSF, Open PBS, Condor)
- LIBs for Parallel Processing
- (MPI, PVM, MAUI, HDF, LAM etc)
- C3 (Cluster Command and Control Suite)
- Ganglia (Web Monitoring Tool)


Performance

- 200, 000 Generic BELLE Events Simulated per day
- About One Million BELLE events per week
- About 12 GB/Day transfer to KEK Possible


When BELLE Goes for Grid Computing we are ready to merge with BELLE Grid

Belle Cluster

CMS – DAQ implementations and scaling

Data to surface:

Average event size 1 Mbyte
No. FED S-link64 ports 700
DAQ links (2.5 Gb/s) 512+512
Event fragment size 2 kB
FED builders (8x8 dual) 64
Technology(2004) Myrinet

Readout Builders (x8):

Lv-1 max. trigger rate
RU Builder (64x64)
Event fragment size
RU/BU systems
Event filter power

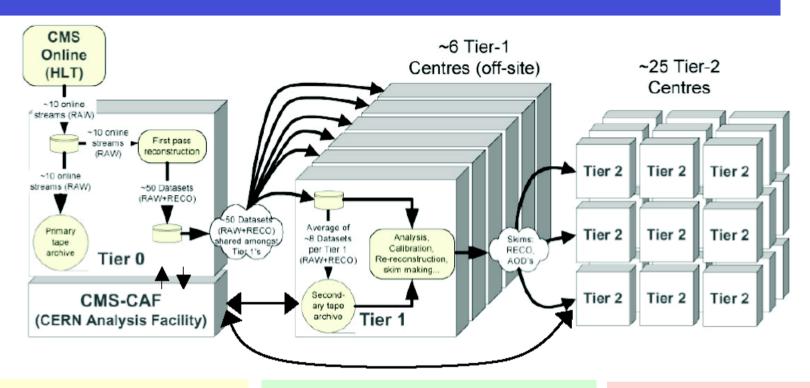
12.5 kHz
125 Tbit/s
16 kB
16 kB
10⁵ Sl95

EVB technology (2006) Open

CMS Online Data Rates

Level –1 Trigger rate	100 kHz
Event Size	1 MB
Event Builder Bandwidth (10 ⁵ Hz X 1 MB)	100 GB
# of Events to be written in tape	100 Hz
Rejection factor for High Level Trigger (HLT)	1000
CPU power required for HLT decision using	~ 300 msec
Pentium III processors running at 1 GHz (41 SI95)	
Total Event Filter Computing Power	1.2 X 10 ⁶ SI95
Data Production	10 TB/day

DAQ system must provide the means to feed data from 700 front-end modules To ~1000 commercial processors at a sustained bandwidth of 100 GB/s


CMS Computing Model

- Distributed model for computing in CMS
 - Cope with computing requirements for storage, processing and analysis of data provided by LHC

		Running Year				
		2007	2008	2009	2010	
Conditions		Pilot	2E33+HI	2E33+HI	E34+HI	
Total	CPU	21.9	43.8	67.2	116.6 MSi2k	
	Disk	4.1	13.8	23.2	34.7 PB	
	Tape	5.4	23.4	41.5	59.5 PB	

- Computing resources need to be geographically distributed, interconnected via high throughput networks and operated by means of Grid software
- CMS computing TDR released in June 2005

Tiered Architecture

Tier-0:

- Accepts data from DAQ
- Prompt reconstruction
- Archives data and distributes them to Tier-1's


Tier-1's:

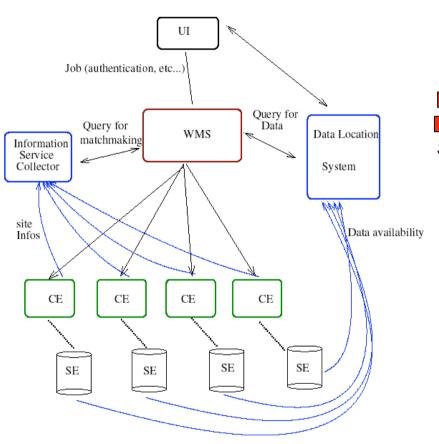
- Real data archiving
- Re-processing
- Calibration
- Skimming and other dataintensive analysis tasks
- MC data archiving

Tier-2's:

- Data Analysis
- MC simulation
- Import datasets from Tier-1 and export MC data

CMS Grid Structure

CMS Computing Requirements at Tier-n

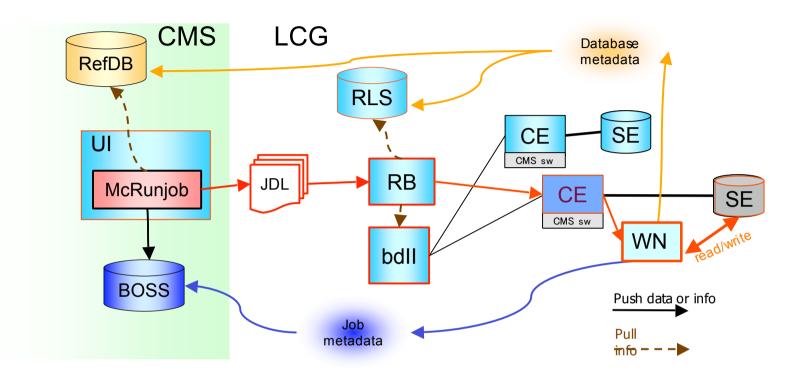

			Running Year			
Year conditions		2007 Pilot	2008 2E33+HI	2009 2E33+HI	2010 E34+HI	
A Tier-0	CPU	2.3	4.6	6.9	11.5	MSi2k
	DISK	0.2	0.4	0.4	0.6	РВ
	TAPE	1.9	3.8	8	11	РВ
	WAN	5	10	14	22	Gb/s
A Tier-1	CPU	1.1	2.1	3.1	5.8	MSi2k
	DISK	0.6	1.1	1.7	2.5	РВ
	TAPE	0.9	1.8	3.7	5.5	РВ
	WAN	5	9	14	21	Gb/s
A Tier-2	CPU	0.4	0.8	1.4	2.2	MSi2k
	DISK	0.1	0.2	0.4	0.7	РВ
	WAN	0.6	1	1.7	2.5	Gb/s

Workload and Data Management Systems

Design philosophy:

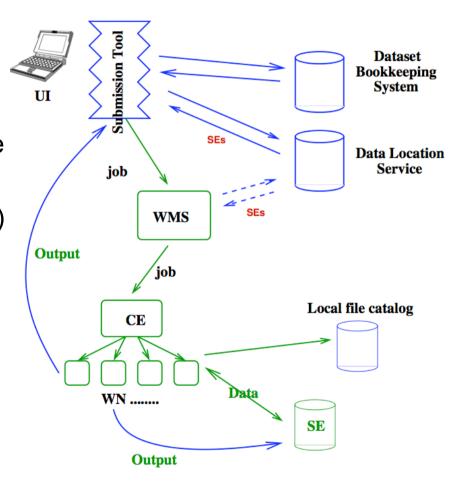
- Use Grid Services as much as possible and also CMS-specific services
- Baseline system with minimal functionality for first physics
- Keep it simple!
- Optimize for the common case:
 - Optimize for read access (most data is write-once, read-many)
 - Optimize for organized bulk processing, but without limiting single user
- Decouple parts of the system:
 - Minimize job dependencies
 - Site-local information stays site-local
- Use explicit data placement
 - Data does not move around in response to job submission
 - All data is placed at a site through explicit CMS policy
- Grid interoperability (LCG and OSG) We expect to operate in a hetrogeneous GRID enviornment but required the details of local GRID implementations to be largely invisible to CMS physicists.

WMS & DMS Services Overview



- No global file replica catalogue
- Track and replicate data with a granularity of 'file blocks'
- Dataset Bookkeeping System(DBS)
 - "What data exist?"
- Data Location Service (DLS)
 - "Where are data located?"
- Local File catalogue
- Data Access and Storage
 - SRM and posix-IO
- Data Transfer and placement system

- \$
- Rely on Grid Workload Management
 - Reliability, performance, monitoring
- Hierarchical task queue in future
- Grid and CMS-specific job monitoring and bookkeeping

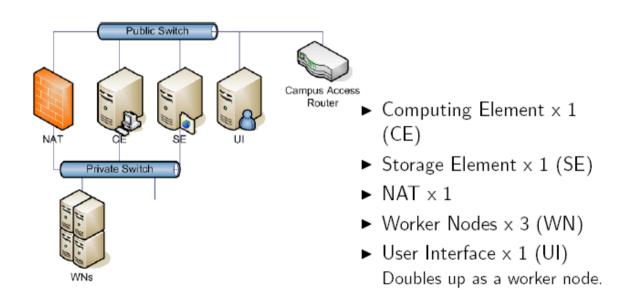

LCG Production Workflow

- Physics groups submit data production request to a central system (RefDB)
- Quasi-real-time job monitoring through BOSS (Batch Object Submission System)
- Normally experiment software pre-installed

Data Analysis on the Grid

- Data samples for the CMS Physics
 TDR distributed in Tier-1 sites
 (~80 million events)
- End-to-end analysis via LCG Grid
- Simple analysis scenario where data is pre-located and jobs are sent to the data
- CMS remote Analysis Builder (CRAB) tool for job preparation, submission, execution and basic monitoring

India-CMS Grid


- India-CMS grid will have the following structure
 - A Tier-2 station at Tata Institute, Mumbai
 - Tier-3 stations at other participating institutes Panjab University,
 Delhi University, BARC. (Vishwabharati will join later)
 - Projected Resource Requirements at CMS Startup

Item	Tier 2 Centre	Tier 3 Centres
CPU Requirement (SI95)	24 k	3 X 32 k
Disk Storage (TB)	330	3 X 30
Tape Storage (TB)	200 (+1000)	3 X30
Network bandwidth (Mbps)	622 (34)	34 (2)

CMS Tier-2 Pilot Project

- TIFR-CMS LCG2 Grid site :
 - The idea is to familiarize ourselves before setting up the official CMS Tier-2 Grid station with all its funtionality.
 - Supported VOs are CMS and dteam
 - Runs CMS production MC jobs submitted in the Grid

Logical Organisation of the Site

Allocated Resources

Allocated Resources

A brief description of the hardware and the running services.

CE: Dual Intel P3 930 MHz, 1 GB Memory

- ► Globus Gatekeeper
- ► Globus Job Manager
- ▶ Torque PBS
- Maui Job Scheduler
- ► Site GIIS

SE: Dual Xeon 3.0 Ghz, 2 GB Memory, 4TB Storage Device

- Globus Grid FTP
- ► R-GMA

Allocated Resources

NAT: Dual Intel P3 930 MHz, 1 GB Memory

Network Address Translation: Route outgoing requests from Worker Nodes to public network.

WN: Dual Xeon 3.0 Ghz, 2GB memory

- ► Torque Clients
- Experimental Software: Currently OSCAR, ORCA and CMKIN.
- Networked in a private subnet, not visible to outside world.
- Use the NAT to connect to the internet.
 (Required for the CMS experimental software)

Status of India-CMS Tier 2 project

- Present status
- Hardware
- 4 Grid managing servers.
 - User Interface (UI)
 - Computing Element (CE)
 - Storage Element (SE) with 1 TB storage disk
 - DNS Server
- 36 Intel Pentium-IV worker nodes.
- 34 Mbps internet connection.

- Software
- Scientific Linux 3.0.5 O.S.
- LCG-2_6_0 middleware installed.
- Portable Batch processing System, PBS installed.
- CMS software is installed
- Immediate Future:
- CPU Power : 80k SI2kStorage Device : 50 TB

Status of India-CMS Tier 2 project

Site information:

Site name: INDIACMS-TIFR

Site address: http://www.indiacms.res.in

Email: support@indiacms.res.in

User Interface: ui.indiacms.res.in

Presently site is up and in a process of testing by *Site Functional Testing (SFT)* team. Person having certificate can submit job to "ce.indiacms.res.in:2119/jobmanager-lcgpbs-dteam/cms" job scheduler queues.

Summary

CMS:

- CMS has adopted a distributed computing model which makes use of Grid technologies
- Production CMS services on the Grid in place
 - Data Management and Workload Management systems
 - Data transfer and placement system
 - Monte Carlo production
 - Data Analysis
- Steadily increase in scale and complexity

India:

- Over the last several years we are stadily developing Farm & Grid infrastructure and successfully running two computing farms one dedicated to D0 and other to Belle.
- D0 farm now being replaced by SAMgrid.
- A pilot project with full functionality of a typical CMS Tier-2 Grid station but with limited resources has been implemented.
- The setting up of the India-CMS Tier-2 Grid station at TIFR is on track.
- India-CMS Tier-3 stations are at various stages of implementations
- Lot of work ahead for all of us.