## The QCD Phase Diagram

$$
\begin{gathered}
\text { Rajiv V. Gavai and Sourendu Gupta } \\
\text { T. I. F. R., Mumbai }
\end{gathered}
$$

## The QCD Phase Diagram

$$
\begin{gathered}
\text { Rajiv V. Gavai and Sourendu Gupta } \\
\text { T. I. F. R., Mumbai }
\end{gathered}
$$

# Introduction 

Methodology
Results
Summary

## Introduction

## Expected QCD Phase Diagram



## Introduction

## Expected QCD Phase Diagram

... but could, however, be ...


## Introduction

## Expected QCD Phase Diagram

... but could, however, be ...



Assuming $N_{f}$ flavours of quarks, and denoting by $\mu_{f}$ the corresponding chemical potentials, the QCD partition function is

$$
\mathcal{Z}=\int D U \exp \left(-S_{G}\right) \Pi_{f} \operatorname{Det} M\left(m_{f}, \mu_{f}\right)
$$

Assuming $N_{f}$ flavours of quarks, and denoting by $\mu_{f}$ the corresponding chemical potentials, the QCD partition function is

$$
\mathcal{Z}=\int D U \exp \left(-S_{G}\right) \Pi_{f} \operatorname{Det} M\left(m_{f}, \mu_{f}\right)
$$

Since $\gamma_{5} M^{\dagger}(\mu) \gamma_{5}=M(-\mu)$, $\operatorname{Det}^{*} M(\mu)=\operatorname{Det} M(-\mu) \neq \operatorname{Det} M(\mu)$, i.e., Det $M$ is complex, $\Longrightarrow$ Phase (Sign) problem!

Assuming $N_{f}$ flavours of quarks, and denoting by $\mu_{f}$ the corresponding chemical potentials, the QCD partition function is

$$
\mathcal{Z}=\int D U \exp \left(-S_{G}\right) \Pi_{f} \operatorname{Det} M\left(m_{f}, \mu_{f}\right)
$$

Since $\gamma_{5} M^{\dagger}(\mu) \gamma_{5}=M(-\mu)$, $\operatorname{Det}^{*} M(\mu)=\operatorname{Det} M(-\mu) \neq \operatorname{Det} M(\mu)$, i.e., Det $M$ is complex, $\Longrightarrow$ Phase (Sign) problem !

Lattice Approaches to unravel the Phase Diagram:

- Lee-Yang zeroes and Two parameter Re-weighting (z. Fodor \& s. Katz, JHEP 0203 (2002) 014 ).

Assuming $N_{f}$ flavours of quarks, and denoting by $\mu_{f}$ the corresponding chemical potentials, the QCD partition function is

$$
\mathcal{Z}=\int D U \exp \left(-S_{G}\right) \Pi_{f} \operatorname{Det} M\left(m_{f}, \mu_{f}\right)
$$

Since $\gamma_{5} M^{\dagger}(\mu) \gamma_{5}=M(-\mu)$, $\operatorname{Det}^{*} M(\mu)=\operatorname{Det} M(-\mu) \neq \operatorname{Det} M(\mu)$, i.e., Det $M$ is complex, $\Longrightarrow$ Phase (Sign) problem !

Lattice Approaches to unravel the Phase Diagram:

- Lee-Yang zeroes and Two parameter Re-weighting (z. Fodor \& s. Katz, JHEP 0203 (2002) 014).
- Imaginary Chemical Potential (Ph. de Forcrand \& ©. Philipsen, NP B642 (2002) 200; M.-P. Lombardo \& M. d'Elia PR D67 (2003) 014505 ).

Assuming $N_{f}$ flavours of quarks, and denoting by $\mu_{f}$ the corresponding chemical potentials, the QCD partition function is

$$
\mathcal{Z}=\int D U \exp \left(-S_{G}\right) \Pi_{f} \operatorname{Det} M\left(m_{f}, \mu_{f}\right)
$$

Since $\gamma_{5} M^{\dagger}(\mu) \gamma_{5}=M(-\mu)$, $\operatorname{Det}^{*} M(\mu)=\operatorname{Det} M(-\mu) \neq \operatorname{Det} M(\mu)$, i.e., Det $M$ is complex, $\Longrightarrow$ Phase (Sign) problem!

Lattice Approaches to unravel the Phase Diagram:

- Lee-Yang zeroes and Two parameter Re-weighting (z. Fodor \& S. Katz, JHEP 0203 (2002) 014 ).
- Imaginary Chemical Potential (Ph. de Forcrand \& O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo \& M. D'Elia PR D67 (2003) 014505 ).
- Taylor Expansion (C. Allon et al., PR D66 (2002) 074507 \& D68 (2003) 014507; R.V. Gavai and S. Gupta, PR D68 (2003) 034506 ).


## Why Taylor series expansion?

- Ease of taking continuum and thermodynamic limit


## Why Taylor series expansion?

- Ease of taking continuum and thermodynamic limit
- E.g., $\exp [\Delta S]$ factor makes this exponentially tough for re-weighting.


## Why Taylor series expansion?

- Ease of taking continuum and thermodynamic limit
- E.g., $\exp [\Delta S]$ factor makes this exponentially tough for re-weighting.
- Discretization errors propagate in an unknown manner in re-weighting.


## Why Taylor series expansion?

- Ease of taking continuum and thermodynamic limit
- E.g., $\exp [\Delta S]$ factor makes this exponentially tough for re-weighting.
- Discretization errors propagate in an unknown manner in re-weighting.
- Reweighting reasonable for only small $\mu$ ? (Ejiri 2004)


## Why Taylor series expansion?

- Ease of taking continuum and thermodynamic limit
- E.g., $\exp [\Delta S]$ factor makes this exponentially tough for re-weighting.
- Discretization errors propagate in an unknown manner in re-weighting.
- Reweighting reasonable for only small

$\mu$ ? (Ejiri 2004)
We study volume dependence at several $T$ to i) bracket the critical region and then to ii) track its change as a function of volume.


## Methodology

From the QCD partition function

$$
\mathcal{Z}=\int D U \exp \left(-S_{G}\right) \Pi_{f} \operatorname{Det} M\left(m_{f}, \mu_{f}\right)
$$

various number densities and susceptibilities are obtained using canonical definitions:

$$
n_{i}=\frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_{i}} \text { and } \quad \chi_{i j}=\frac{T}{V} \frac{\partial^{2} \ln \mathcal{Z}}{\partial \mu_{i} \partial \mu_{j}} .
$$

Higher order susceptibilities are defined by

$$
\begin{equation*}
\chi_{f g \cdots}=\frac{T}{V} \frac{\partial^{n} \log Z}{\partial \mu_{f} \partial \mu_{g} \cdots}=\frac{\partial^{n} P}{\partial \mu_{f} \partial \mu_{g} \cdots} \tag{1}
\end{equation*}
$$

## Methodology

From the QCD partition function

$$
\mathcal{Z}=\int D U \exp \left(-S_{G}\right) \Pi_{f} \operatorname{Det} M\left(m_{f}, \mu_{f}\right)
$$

various number densities and susceptibilities are obtained using canonical definitions:

$$
n_{i}=\frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_{i}} \text { and } \quad \chi_{i j}=\frac{T}{V} \frac{\partial^{2} \ln \mathcal{Z}}{\partial \mu_{i} \partial \mu_{j}}
$$

Higher order susceptibilities are defined by

$$
\begin{equation*}
\chi_{f g \cdots}=\frac{T}{V} \frac{\partial^{n} \log Z}{\partial \mu_{f} \partial \mu_{g} \cdots}=\frac{\partial^{n} P}{\partial \mu_{f} \partial \mu_{g} \cdots} \tag{1}
\end{equation*}
$$

## Methodology

From the QCD partition function

$$
\mathcal{Z}=\int D U \exp \left(-S_{G}\right) \Pi_{f} \operatorname{Det} M\left(m_{f}, \mu_{f}\right)
$$

various number densities and susceptibilities are obtained using canonical definitions:

$$
n_{i}=\frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_{i}} \text { and } \quad \chi_{i j}=\frac{T}{V} \frac{\partial^{2} \ln \mathcal{Z}}{\partial \mu_{i} \partial \mu_{j}}
$$

Higher order susceptibilities are defined by

$$
\begin{equation*}
\chi_{f g \cdots}=\frac{T}{V} \frac{\partial^{n} \log Z}{\partial \mu_{f} \partial \mu_{g} \cdots}=\frac{\partial^{n} P}{\partial \mu_{f} \partial \mu_{g} \cdots} \tag{1}
\end{equation*}
$$

These are Taylor coefficients of the pressure $P$ in its expansion in $\mu$.

$$
\begin{equation*}
\frac{\Delta P}{T^{4}} \equiv \frac{P(\mu, T)}{T^{4}}-\frac{P(0, T)}{T^{4}}=\sum_{n_{u}, n_{d}} \chi_{n_{u}, n_{d}} \frac{1}{n_{u}!}\left(\frac{\mu_{u}}{T}\right)^{n_{u}} \frac{1}{n_{d}!}\left(\frac{\mu_{d}}{T}\right)^{n_{d}} \tag{2}
\end{equation*}
$$

From this a series for baryonic susceptibility can be constructed. Its radius of convergence gives the nearest critical point.

For 2 light flavours, its coefficients up to 6 th order in $\mu_{B} / 3=\mu_{u}=\mu_{d}$ are

$$
\begin{gather*}
\chi_{B}^{0}=\chi_{20}, \quad \chi_{B}^{4}=\frac{1}{4!}\left[\chi_{60}+4 \chi_{51}+7 \chi_{42}+4 \chi_{33}\right] \\
\chi_{B}^{2}=\frac{1}{2!}\left[\chi_{40}+2 \chi_{31}+\chi_{22}\right], \quad \chi_{B}^{6}=\frac{1}{6!}\left[\chi_{80}+6 \chi_{71}+16 \chi_{62}+26 \chi_{53}+15 \chi_{44}\right] \tag{3}
\end{gather*}
$$

These are Taylor coefficients of the pressure $P$ in its expansion in $\mu$.

$$
\begin{equation*}
\frac{\Delta P}{T^{4}} \equiv \frac{P(\mu, T)}{T^{4}}-\frac{P(0, T)}{T^{4}}=\sum_{n_{u}, n_{d}} \chi_{n_{u}, n_{d}} \frac{1}{n_{u}!}\left(\frac{\mu_{u}}{T}\right)^{n_{u}} \frac{1}{n_{d}!}\left(\frac{\mu_{d}}{T}\right)^{n_{d}} \tag{2}
\end{equation*}
$$

From this a series for baryonic susceptibility can be constructed. Its radius of convergence gives the nearest critical point.

For 2 light flavours, its coefficients up to 6th order in $\mu_{B} / 3=\mu_{u}=\mu_{d}$ are

$$
\begin{gather*}
\chi_{B}^{0}=\chi_{20}, \quad \chi_{B}^{4}=\frac{1}{4!}\left[\chi_{60}+4 \chi_{51}+7 \chi_{42}+4 \chi_{33}\right] \\
\chi_{B}^{2}=\frac{1}{2!}\left[\chi_{40}+2 \chi_{31}+\chi_{22}\right], \quad \chi_{B}^{6}=\frac{1}{6!}\left[\chi_{80}+6 \chi_{71}+16 \chi_{62}+26 \chi_{53}+15 \chi_{44}\right] \tag{3}
\end{gather*}
$$

These are Taylor coefficients of the pressure $P$ in its expansion in $\mu$.

$$
\begin{equation*}
\frac{\Delta P}{T^{4}} \equiv \frac{P(\mu, T)}{T^{4}}-\frac{P(0, T)}{T^{4}}=\sum_{n_{u}, n_{d}} \chi_{n_{u}, n_{d}} \frac{1}{n_{u}!}\left(\frac{\mu_{u}}{T}\right)^{n_{u}} \frac{1}{n_{d}!}\left(\frac{\mu_{d}}{T}\right)^{n_{d}} \tag{2}
\end{equation*}
$$

From this a series for baryonic susceptibility can be constructed. Its radius of convergence gives the nearest critical point.

For 2 light flavours, its coefficients up to 6th order in $\mu_{B} / 3=\mu_{u}=\mu_{d}$ are

$$
\begin{gather*}
\chi_{B}^{0}=\chi_{20}, \quad \chi_{B}^{4}=\frac{1}{4!}\left[\chi_{60}+4 \chi_{51}+7 \chi_{42}+4 \chi_{33}\right] \\
\chi_{B}^{2}=\frac{1}{2!}\left[\chi_{40}+2 \chi_{31}+\chi_{22}\right], \quad \chi_{B}^{6}=\frac{1}{6!}\left[\chi_{80}+6 \chi_{71}+16 \chi_{62}+26 \chi_{53}+15 \chi_{44}\right] \tag{3}
\end{gather*}
$$

Successive estimates for the radius of convergence can be obtained from these using

$$
\rho_{n}=\left[\left|\frac{\chi_{B}^{0}}{\chi_{B}^{n}}\right|\right]^{\frac{1}{n}} \quad \text { or } \quad r_{2 n+2}=\sqrt{\left|\frac{\chi_{B}^{2 n}}{\chi_{B}^{2 n+2}}\right|} .
$$

Similar coefficients for the off-diagonal susceptibility are

$$
\begin{aligned}
& \underline{\chi}_{B}^{0}=\chi_{11}, \underline{\chi}_{B}^{2} \\
&=\frac{1}{2!}\left[2 \chi_{31}+2 \chi_{22}\right] \\
& \underline{\chi}_{B}^{4}=\frac{1}{4!}\left[2 \chi_{51}+8 \chi_{42}+6 \chi_{33}\right], \underline{\chi}_{B}^{6}
\end{aligned}=\frac{1}{6!}\left[2 \chi_{71}+12 \chi_{62}+30 \chi_{53}+20 \chi_{44}\right](4), ~ \$
$$

$\Omega$ The ratio $\chi_{11} / \chi_{20}$ can be shown to yield the ratio of widths of the measure in the imaginary and real directions at $\mu=0$.
$\checkmark$ Can be generalized to nonzero $\mu$ with some care and the coefficients above.

Successive estimates for the radius of convergence can be obtained from these using

$$
\rho_{n}=\left[\left|\frac{\chi_{B}^{0}}{\chi_{B}^{n}}\right|\right]^{\frac{1}{n}} \quad \text { or } \quad r_{2 n+2}=\sqrt{\left|\frac{\chi_{B}^{2 n}}{\chi_{B}^{2 n+2}}\right|} .
$$

Similar coefficients for the off-diagonal susceptibility are

$$
\begin{aligned}
& \underline{\chi}_{B}^{0}=\chi_{11}, \underline{\chi}_{B}^{2} \\
&=\frac{1}{2!}\left[2 \chi_{31}+2 \chi_{22}\right] \\
& \underline{\chi}_{B}^{4}=\frac{1}{4!}\left[2 \chi_{51}+8 \chi_{42}+6 \chi_{33}\right], \underline{\chi}_{B}^{6}
\end{aligned}=\frac{1}{6!}\left[2 \chi_{71}+12 \chi_{62}+30 \chi_{53}+20 \chi_{44}\right](4), ~ \$
$$

$\Theta$ The ratio $\chi_{11} / \chi_{20}$ can be shown to yield the ratio of widths of the measure in the imaginary and real directions at $\mu=0$.
$\rangle$ Can be generalized to nonzero $\mu$ with some care and the coefficients above.

Successive estimates for the radius of convergence can be obtained from these using

$$
\rho_{n}=\left[\left|\frac{\chi_{B}^{0}}{\chi_{B}^{n}}\right|\right]^{\frac{1}{n}} \quad \text { or } \quad r_{2 n+2}=\sqrt{\left|\frac{\chi_{B}^{2 n}}{\chi_{B}^{2 n+2}}\right|} .
$$

Similar coefficients for the off-diagonal susceptibility are

$$
\begin{aligned}
& \underline{\chi}_{B}^{0}=\chi_{11}, \underline{\chi}_{B}^{2} \\
&=\frac{1}{2!}\left[2 \chi_{31}+2 \chi_{22}\right] \\
& \underline{\chi}_{B}^{4}=\frac{1}{4!}\left[2 \chi_{51}+8 \chi_{42}+6 \chi_{33}\right], \underline{\chi}_{B}^{6}
\end{aligned}=\frac{1}{6!}\left[2 \chi_{71}+12 \chi_{62}+30 \chi_{53}+20 \chi_{44}\right](4), ~ \$
$$

$\Omega$ The ratio $\chi_{11} / \chi_{20}$ can be shown to yield the ratio of widths of the measure in the imaginary and real directions at $\mu=0$.
$\checkmark$ Can be generalized to nonzero $\mu$ with some care and the coefficients above.

Successive estimates for the radius of convergence can be obtained from these using

$$
\rho_{n}=\left[\left|\frac{\chi_{B}^{0}}{\chi_{B}^{n}}\right|\right]^{\frac{1}{n}} \quad \text { or } \quad r_{2 n+2}=\sqrt{\left|\frac{\chi_{B}^{2 n}}{\chi_{B}^{2 n+2}}\right|} .
$$

Similar coefficients for the off-diagonal susceptibility are

$$
\begin{aligned}
& \underline{\chi}_{B}^{0}=\chi_{11}, \underline{\chi}_{B}^{2} \\
&=\frac{1}{2!}\left[2 \chi_{31}+2 \chi_{22}\right] \\
& \underline{\chi}_{B}^{4}=\frac{1}{4!}\left[2 \chi_{51}+8 \chi_{42}+6 \chi_{33}\right], \underline{\chi}_{B}^{6}
\end{aligned}=\frac{1}{6!}\left[2 \chi_{71}+12 \chi_{62}+30 \chi_{53}+20 \chi_{44}\right](4)
$$

$\Theta$ The ratio $\chi_{11} / \chi_{20}$ can be shown to yield the ratio of widths of the measure in the imaginary and real directions at $\mu=0$.
$\checkmark$ Can be generalized to nonzero $\mu$ with some care and the coefficients above.

## The Susceptibilities

All susceptibilities can be written as traces of products of $M^{-1}$ and various derivatives of $M$.
Two steps for getting NLS: 1) Writing down in terms of derivatives of $Z$ and 2) obtaining these derivatives in terms of traces.

Setting $\mu_{i}=0$, $\chi$ 's are nontrivial for only even $N=n_{u}+n_{d}$. Thus at leading order,

$$
\begin{equation*}
\chi_{20}=\left(\frac{T}{V}\right) \frac{Z_{20}}{Z} \quad \chi_{11}=\left(\frac{T}{V}\right) \frac{Z_{11}}{Z} \tag{5}
\end{equation*}
$$

Here $Z_{20}=Z\left[\left\langle\mathcal{O}_{2}+\mathcal{O}_{11}\right\rangle\right], Z_{11}=Z\left[\left\langle\mathcal{O}_{11}\right\rangle\right], \mathcal{O}_{1}=\operatorname{Tr} M^{-1} M^{\prime}$,

$$
\begin{aligned}
& \mathcal{O}_{2}=\mathcal{O}_{1}^{\prime}=\operatorname{Tr} M^{-1} M^{\prime \prime}-\operatorname{Tr} M^{-1} M^{\prime} M^{-1} M^{\prime}, \text { and } \\
& \mathcal{O}_{11}=\mathcal{O}_{1} \cdot \mathcal{O}_{1}=\left(\operatorname{Tr} M^{-1} M^{\prime}\right)^{2}
\end{aligned}
$$

## The Susceptibilities

All susceptibilities can be written as traces of products of $M^{-1}$ and various derivatives of $M$.
Two steps for getting NLS: 1) Writing down in terms of derivatives of $Z$ and 2) obtaining these derivatives in terms of traces.

Setting $\mu_{i}=0$, $\chi$ 's are nontrivial for only even $N=n_{u}+n_{d}$. Thus at leading order,

$$
\begin{equation*}
\chi_{20}=\left(\frac{T}{V}\right) \frac{Z_{20}}{Z} \quad \chi_{11}=\left(\frac{T}{V}\right) \frac{Z_{11}}{Z} \tag{5}
\end{equation*}
$$

Here $Z_{20}=Z\left[\left\langle\mathcal{O}_{2}+\mathcal{O}_{11}\right\rangle\right], Z_{11}=Z\left[\left\langle\mathcal{O}_{11}\right\rangle\right], \mathcal{O}_{1}=\operatorname{Tr} M^{-1} M^{\prime}$,

$$
\begin{aligned}
& \mathcal{O}_{2}=\mathcal{O}_{1}^{\prime}=\operatorname{Tr} M^{-1} M^{\prime \prime}-\operatorname{Tr} M^{-1} M^{\prime} M^{-1} M^{\prime}, \text { and } \\
& \mathcal{O}_{11}=\mathcal{O}_{1} \cdot \mathcal{O}_{1}=\left(\operatorname{Tr} M^{-1} M^{\prime}\right)^{2}
\end{aligned}
$$

Higher order NLS are more involved since higher derivatives of $\mathcal{O}$ with more quark propagators come into play; systematic evaluation procedure helpful to optimize the number of $M$-inversions.

At the next, $4^{\text {th }}$, order we have

$$
\begin{align*}
& \chi_{40}=\left(\frac{T}{V}\right)\left[\frac{Z_{40}}{Z}-3\left(\frac{Z_{20}}{Z}\right)^{2}\right], \\
& \chi_{31}=\left(\frac{T}{V}\right)\left[\frac{Z_{31}}{Z}-3\left(\frac{Z_{20}}{Z}\right)\left(\frac{Z_{11}}{Z}\right)\right], \\
& \chi_{22}=\left(\frac{T}{V}\right)\left[\frac{Z_{22}}{Z}-\left(\frac{Z_{20}}{Z}\right)^{2}-2\left(\frac{Z_{11}}{Z}\right)^{2}\right], \tag{6}
\end{align*}
$$

Higher order NLS are more involved since higher derivatives of $\mathcal{O}$ with more quark propagators come into play; systematic evaluation procedure helpful to optimize the number of $M$-inversions.

At the next, $4^{\text {th }}$, order we have

$$
\begin{align*}
& \chi_{40}=\left(\frac{T}{V}\right)\left[\frac{Z_{40}}{Z}-3\left(\frac{Z_{20}}{Z}\right)^{2}\right], \\
& \chi_{31}=\left(\frac{T}{V}\right)\left[\frac{Z_{31}}{Z}-3\left(\frac{Z_{20}}{Z}\right)\left(\frac{Z_{11}}{Z}\right)\right], \\
& \chi_{22}=\left(\frac{T}{V}\right)\left[\frac{Z_{22}}{Z}-\left(\frac{Z_{20}}{Z}\right)^{2}-2\left(\frac{Z_{11}}{Z}\right)^{2}\right], \tag{6}
\end{align*}
$$

with

$$
\begin{align*}
Z_{40} & =Z\left\langle\mathcal{O}_{1111}+6 \mathcal{O}_{112}+4 \mathcal{O}_{13}+3 \mathcal{O}_{22}+\mathcal{O}_{4}\right\rangle \\
Z_{31} & =Z\left\langle\mathcal{O}_{1111}+3 \mathcal{O}_{112}+\mathcal{O}_{13}\right\rangle \\
Z_{22} & =Z\left\langle\mathcal{O}_{1111}+2 \mathcal{O}_{112}+\mathcal{O}_{22}\right\rangle \tag{7}
\end{align*}
$$

The 8 th order, involves operators up to $\mathcal{O}_{8}$ which in turn have terms up to 8 quark propagators. In fact, the entire evaluation of the $\chi_{80}$ needs 20 inversions of Dirac matrix.
with

$$
\begin{align*}
& Z_{40}=Z\left\langle\mathcal{O}_{1111}+6 \mathcal{O}_{112}+4 \mathcal{O}_{13}+3 \mathcal{O}_{22}+\mathcal{O}_{4}\right\rangle \\
& Z_{31}=Z\left\langle\mathcal{O}_{1111}+3 \mathcal{O}_{112}+\mathcal{O}_{13}\right\rangle \\
& Z_{22}=Z\left\langle\mathcal{O}_{1111}+2 \mathcal{O}_{112}+\mathcal{O}_{22}\right\rangle . \tag{7}
\end{align*}
$$

The 8 th order, involves operators up to $\mathcal{O}_{8}$ which in turn have terms up to 8 quark propagators. In fact, the entire evaluation of the $\chi_{80}$ needs 20 inversions of Dirac matrix.

- Problem of finding the minimum number inversions for a given order - Akin to Steiner Problem in Computer Science $\rightsquigarrow$ our algorithm
- The traces are estimated by a stochastic method: $\operatorname{Tr} A=\sum_{i=1}^{N_{v}} R_{i}^{\dagger} A R_{i} / 2 N_{v}$, and $(\operatorname{Tr} A)^{2}=2 \sum_{i>j=1}^{L}(\operatorname{Tr} A)_{i}(\operatorname{Tr} A)_{j} / L(L-1)$, where $R_{i}$ is a complex vector from an Gaussian ensemble of $N_{v}$ which is further subdivided in L independent sets.


Higher NLS need larger $N_{v}$ : Up to 500 used as $N_{s}$ increased to 24.

- Problem of finding the minimum number inversions for a given order - Akin to Steiner Problem in Computer Science $\rightsquigarrow$ our algorithm
- The traces are estimated by a stochastic method: $\operatorname{Tr} A=\sum_{i=1}^{N_{v}} R_{i}^{\dagger} A R_{i} / 2 N_{v}$, and $(\operatorname{Tr} A)^{2}=2 \sum_{i>j=1}^{L}(\operatorname{Tr} A)_{i}(\operatorname{Tr} A)_{j} / L(L-1)$, where $R_{i}$ is a complex vector from an Gaussian ensemble of $N_{v}$ which is further subdivided in L independent sets.


Higher NLS need larger $N_{v}$ : Up to 500 used as $N_{s}$ increased to 24.

- Problem of finding the minimum number inversions for a given order - Akin to Steiner Problem in Computer Science $\rightsquigarrow$ our algorithm
- The traces are estimated by a stochastic method: $\operatorname{Tr} A=\sum_{i=1}^{N_{v}} R_{i}^{\dagger} A R_{i} / 2 N_{v}$, and $(\operatorname{Tr} A)^{2}=2 \sum_{i>j=1}^{L}(\operatorname{Tr} A)_{i}(\operatorname{Tr} A)_{j} / L(L-1)$, where $R_{i}$ is a complex vector from an Gaussian ensemble of $N_{v}$ which is further subdivided in L independent sets.


Higher NLS need larger $N_{v}$ : Up to 500 used as $N_{s}$ increased to 24.

## Our Simulations \& Results

- Lattice used : $4 \times N_{s}^{3}, N_{s}=8,10,12,16,24$
- Staggered fermions with $N_{f}=2$ of $m / T_{c}=0.1$; R-algorithm with traj. length of 1 MD time on $N_{s}=8$, scaled $\propto N_{s}$ on larger ones.
- $m_{\rho} / T_{c}=5.4 \pm 0.2$ and $m_{\pi} / m_{\rho}=0.31 \pm 0.01$ (MILC)


## Our Simulations \& Results

- Lattice used : $4 \times N_{s}^{3}, N_{s}=8,10,12,16,24$
- Staggered fermions with $N_{f}=2$ of $m / T_{c}=0.1$; R-algorithm with traj. length of 1 MD time on $N_{s}=8$, scaled $\propto N_{s}$ on larger ones.
- $m_{\rho} / T_{c}=5.4 \pm 0.2$ and $m_{\pi} / m_{\rho}=0.31 \pm 0.01$ (MILC)
- Simulations made at $T / T_{c}=0.75(2), 0.80(2), 0.85(1), 0.90(1), 0.95(1)$, $0.975(10), 1.00(1), 1.05(1), 1.25(1), 1.65(6)$ and $2.15(10)$
- Typical stat. 50-100 in max autocorrelation units.


## Quark Number Susceptibility

- Proposed as a signal of light quarks in QGP (McLerran '87).


## Quark Number Susceptibility

- Proposed as a signal of light quarks in QGP (McLerran '87).
- Early results near $T_{c}$ displayed order-parameter like behaviour in full QCD (Gottlieb et al. '87)
- And quenched QCD (Gavai et al. '89).


## Quark Number Susceptibility

- Proposed as a signal of light quarks in QGP (McLerran '87).
- Early results near $T_{c}$ displayed order-parameter like behaviour in full QCD (Gottlieb et al. '87)
- And quenched QCD (Gavai et al. '89).



## Quark Number Susceptibility

- Proposed as a signal of light quarks in QGP (Mcleran ' 87 ).
- Early results near $T_{c}$ displayed order-parameter like behaviour in full QCD (Gottlieb et al. '87)
- And quenched QCD (Gavi et al. '89).


A Fluctuations, Wroblewski Parameter ....
© Comparison with weak coupling.

A Interesting to note that $\chi_{40}$ shows the same volume dependence at $T_{c}$ as $\chi_{L}$ which in turn comes from the $\left\langle\mathcal{O}_{22}\right\rangle_{c}$.



A Interesting to note that $\chi_{40}$ shows the same volume dependence at $T_{c}$ as $\chi_{L}$ which in turn comes from the $\left\langle\mathcal{O}_{22}\right\rangle_{c}$.


A Interesting to note that $\chi_{40}$ shows the same volume dependence at $T_{c}$ as $\chi_{L}$ which in turn comes from the $\left\langle\mathcal{O}_{22}\right\rangle_{c}$.


## More Details

Measure of the seriousness of sign problem : Ratio $\chi_{11} / \chi_{20}$



Supercomputing RHIC Physics, TIFR, Mumbai, December 5, 2005
R. V. Gavai

Top

## Volume Dependence

© Each coefficient in the Taylor expansion must be volume independent.
A Nontrivial check on lattice computations since there are diverging terms which have to cancel.

## Volume Dependence

© Each coefficient in the Taylor expansion must be volume independent.
A Nontrivial check on lattice computations since there are diverging terms which have to cancel.
© We had earlier suggested to obtain more pairs of diverging terms by taking larger $N_{f}$.

A E.g. $T / V\left\langle\mathcal{O}_{22}\right\rangle_{c}$ should be finite as it is a combination of Taylor Coeffs.

## Volume Dependence

© Each coefficient in the Taylor expansion must be volume independent.
A Nontrivial check on lattice computations since there are diverging terms which have to cancel.
© We had earlier suggested to obtain more pairs of diverging terms by taking larger $N_{f}$.

A E.g. $T / V\left\langle\mathcal{O}_{22}\right\rangle_{c}$ should be finite as it is a combination of Taylor Coeffs.





- Strong finite size effects for small $N_{s}$. A strong change around $N_{s} \sim 14$ or $N_{s} m_{\pi} \sim 6$. ( Compatible with arguments of Smilga \& Leutwyler and also seen for i) hadron masses by Gupta \& Ray and ii) DIS structure functions by ZeRo Collaboration, Gaugnelli et al. PLB '04)

- Strong finite size effects for small $N_{s}$. A strong change around $N_{s} \sim 14$ or $N_{s} m_{\pi} \sim 6$. ( Compatible with arguments of Smilga \& Leutwyler and also seen for i) hadron masses by Gupta \& Ray and ii) DIS structure functions by ZeRo Collaboration, Gaugnelli et al. PLB '04)
- Bielefeld results for $N_{s} m_{\pi} \sim 15$ but large $m_{\pi} / m_{\rho} \sim 0.7$.


- Our estimate consistent with Fodor \& Katz (2002) $\left[m_{\pi} / m_{\rho}=0.31\right.$ and $\left.N_{s} m_{\pi} \sim 3-4\right]$.

- Our estimate consistent with Fodor \& Katz (2002) $\left[m_{\pi} / m_{\rho}=0.31\right.$ and $\left.N_{s} m_{\pi} \sim 3-4\right]$.
- Critical point shifted to smaller $\mu_{B} / T \sim 1-2$.



A Radii of convergence as a function of the order of expansion at $T=0.95 T_{c}$ on $N_{s}=8$ (circles) and 24 (boxes).


- Radii of convergence as a function of the order of expansion at $T=0.95 T_{c}$ on $N_{s}=8$ (circles) and 24 (boxes).
© Left panel for $\rho_{n}$ and right one for $r_{n}$.
Extrapolation in $n \rightsquigarrow \mu^{E} / T^{E}=1.1 \pm 0.2$ at $T^{E}=0.95 T_{c}$.

© Radii of convergence as a function of the order of expansion at $T=0.95 T_{c}$ on $N_{s}=8$ (circles) and 24 (boxes).
© Left panel for $\rho_{n}$ and right one for $r_{n}$.
Extrapolation in $n \rightsquigarrow \mu^{E} / T^{E}=1.1 \pm 0.2$ at $T^{E}=0.95 T_{c}$.
© Finite volume shift consistent with Ising Universality class.


## Summary

- Phase diagram in $T-\mu$ on $N_{t}=4$ has begun to emerge: Different methods, $\rightsquigarrow$ similar qualitative picture.


## Summary

- Phase diagram in $T-\mu$ on $N_{t}=4$ has begun to emerge: Different methods, $\rightsquigarrow$ similar qualitative picture.
- Volume independence provides check on the computation from cancellations in connected terms


## Summary

- Phase diagram in $T-\mu$ on $N_{t}=4$ has begun to emerge: Different methods, $\rightsquigarrow$ similar qualitative picture.
- Volume independence provides check on the computation from cancellations in connected terms
- Our results on volume dependence suggest $N_{s} m_{\pi}>6$ in thermodynamic volume limit. $\mu_{B} / T$ of critical end point shows a strong drop at that volume.


## Summary

- Phase diagram in $T-\mu$ on $N_{t}=4$ has begun to emerge: Different methods, $\rightsquigarrow$ similar qualitative picture.
- Volume independence provides check on the computation from cancellations in connected terms
- Our results on volume dependence suggest $N_{s} m_{\pi}>6$ in thermodynamic volume limit. $\mu_{B} / T$ of critical end point shows a strong drop at that volume.
- $\mu_{B} / T \sim 1-2$ is indicated for the critical point. Larger $N_{t}$ would be interesting.


## QCD Phase Diagram : 2005



## QCD Phase Diagram : 2005



- Our result shown by solid point; Fodor-Katz '02 point (same quark mass) also shown. Freezout Curves from Cleymans using $T_{c}$ in our case.


## QCD Phase Diagram : 2005



- Our result shown by solid point; Fodor-Katz '02 point (same quark mass) also shown. Freezout Curves from Cleymans using $T_{c}$ in our case.
- References: RVG and Sourendu Gupta, PRD, 71, 114014 (2005) and PRD 72, 054006 (2005).

| $m_{\rho} / T_{c}$ | $m_{\pi} / m_{\rho}$ | $m_{N} / m_{\rho}$ | $N_{s} m_{\pi}$ | flavours | $T^{E} / T_{c}$ | $\mu_{B}^{E} / T^{E}$ |
| ---: | ---: | ---: | :---: | :---: | :---: | :---: |
| $5.372(5)$ | $0.185(2)$ | - | $1.9-3.0$ | $2+1$ | $0.99(2)$ | $2.2(2)$ |
| $5.12(8)$ | $0.307(6)$ | - | $3.1-3.9$ | $2+1$ | $0.93(3)$ | $4.5(2)$ |
| $5.4(2)$ | $0.31(1)$ | $1.8(2)$ | $3.3-10.0$ | 2 | $0.95(2)$ | $1.1(2)$ |
| $5.4(2)$ | $0.31(1)$ | $1.8(2)$ | 3.3 | 2 | - | - |
| $5.5(1)$ | $0.70(1)$ | - | 15.4 | 2 | - | - |

Table 1: Summary of critical end point estimates- the lattice spacing is $a=1 / 4 T . N_{s}$ is the spatial size of the lattice and $N_{s} m_{\pi}$ is the size in units of the pion Compton wavelength, evaluated for $T=\mu=0$. The ratio $m_{\pi} / m_{K}$ sets the scale of the strange quark mass.

Results are sequentially from Fodor-Katz '04, Fodor-Katz '02, Gavai-Gupta, de Forcrand- Philipsen and Bielefeld-Swansea.

